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Introduction

Deep learning models contain up to multiple billions of parameters [1, 2]
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Introduction

Embedded Devices
Photo by Zan on Unsplash (https://unsplash.com/photos/wGqz5YSqsfk)

Mobile phones and IoT devices
Photo by BENCE BOROS on Unsplash (https://unsplash.com/photos/anapPhJFRhM)
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Introduction

Bandwidth-constrained communication channels
Photo by Jordan Harrison on Unsplash (https://unsplash.com/photos/40XgDxBfYXM)

Mobile Connections & 5G
Photo by Mika Baumeister on Unsplash (https://unsplash.com/photos/gwWkv06WYFY)
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Introduction

Trained Quantization
Image by Hyacinth on Wikimedia Commons 

(https://commons.wikimedia.org/wiki/File:3-
bit_resolution_analog_comparison.png)

Pruning
Han, Song, et al. "Learning both weights and 

connections for efficient neural network." NIPS. 2015

Distillation
Image by Prakhar Ganesh 

(https://towardsdatascience.com/knowledge-
distillation-simplified-dd4973dbc764)
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• Proposed solutions:
• Highly optimized for one application 

area and/or
• Require expensive re-training of the 

neural network

• Desired solution:
• General purpose
• Easy-to-use
• Fast and efficient
• High compression gains
• Must not harm the performance of the 

neural network

Introduction
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• DeepCABAC [12] is a general-
purpose neural network 
compression algorithm
• Was adopted to the current working 

draft of the MPEG-7 part 17 
standardization efforts
• Is based on context-based adaptive 
binary arithmetic coding (CABAC) 
[13], widely used in video coding 
standards

DeepCABAC

10100110…
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DeepCABAC

• Why is DeepCABAC ideal as a universal compression method?
1) CABAC was designed for lossless compression of integers, i.e. can be combined with 

any quantization scheme
2) Achieves high compression gains
3) Adaptive towards any kind of tensor-shaped data
4) Fast and efficient and does not need the model to undergo expensive re-training
5) Can be used in a plug & play fashion, i.e. it can be easily integrated into existing 

deep learning pipelines, e.g. federated learning
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1) A fully-trained model needs to be 
communicated, e.g. when a model 
was trained on central server and 
needs to be deployed on-device

2) The recipient already possesses an 
out-of-date version and only the 
element-wise difference needs to 
be communicated

Client

Client

Client

ServerServer

Client

Client

Client

On-Device Inference Federated Learning

Training Data Model(-Update)Test Data Prediction

Compression Scenarios in Federated Learning
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How Does DeepCABAC Work?

Compression and Decompression of a neural network
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How Does DeepCABAC Work?

Quantization Binarization Context 
Modelling

Entropy 
Coding

Lossy Lossless
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• Quantization
• Continuous input data need to be 

converted to discrete inputs
• CABAC does not prescribe any specific 

way of quantization

How Does DeepCABAC Work?
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• Binarization
• CABAC expects discrete inputs 

(integers)
• Represents each unique input value as 

a sequence of binary decisions

How Does DeepCABAC Work?

wn-1 
: 

w0

Probability 
estimate

wj Binarization 10110100 Arithmetic 
coding 110

Update

Context  
models
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CABAC

Decision 
Tree
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• Context Modelling
• For each of the decisions in the 

binarization, a probability model is 
used
• This context model is updated on-the-

fly based on how the current input 
data is distributed
• Local distribution estimation means no 

prior for the data distribution is 
needed

How Does DeepCABAC Work?
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• Entropy Coding
• Encodes the bit sequence with 

minimal redundancy
• Arithmetic coding is extremely 

efficient

How Does DeepCABAC Work?
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Experiments

• We performed two kinds of experiments:
1) Compression of pre-trained neural networks to gauge general compression gains 

achievable using DeepCABAC
2) A federated learning use-case where different neural network architectures where 

trained on CIFAR-10 using 10 clients



© Fraunhofer HHI | 25.10.2020 | 17 David Neumann
david.neumann@hhi.fraunhofer.de

• Full-network compression
• „DC“ denotes networks compressed 

with DeepCABAC
• „Bl“ denotes a baseline compression 

algorithm (bZip)
• DeepCABAC consistently attains better 

rate-distortion curves

Experiments
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Experiments

• Compression ratios achieved at no loss of accuracy when applying 
DeepCABAC to a wide set of NN architectures trained on different tasks 

Models Original Size
[MB]

Original Accuracy
(top 1 [%])

bZip
(CR [%])

DeepCABAC
(CR [%])

Accuracy
(top 1 [%])

VGG16 553.43 70.93 15.52 11.98 70.92

ResNet50 102.23 74.98 29.09 22.52 74.99

MobileNet-v2 14.15 71.47 36.24 28.57 71.48

Audio-Net 467.27 58.27 15.15 10.93 59.51

FCAE 304.72 30.13 PSNR 39.28 30.63 30.17 PSNR
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• Federated Learning
• Convergence speed with respect to 

communicated bits
• Solid lines denote no compression
• Dashed lines denote a baseline 

compression algorithm (bZip)
• Dotted lines denote DeepCABAC 

compression
• For both compression methods, the 

weights were quantized to 2 bits

Experiments
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Experiments

• Federated learning with 10 clients on the CIFAR-10 dataset
• Compression results for 2-bit nearest neighbor quantization encoded

Models Total 
Communication

Original Accuracy
(top 1 [%])

bZip
(CR [%])

DeepCABAC
(CR [%])

Accuracy
(top 1 [%])

LeNet 553.43 MB 64.84 4.84 3.29 66.39

VGG11 6.98 GB 74.91 4.90 2.76 76.15

VGG16 90.86 GB 77.44 3.36 2.30 78.98
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Conclusion

• Several specialized solutions have been proposed for different use-cases

• There is a need for general and easy-to-use compression methods

• We addressed this issue and presented DeepCABAC, a universal compression 
tool, which achieves competitive compression rates with no or minimal loss 
of accuracy

• We demonstrated that DeepCABAC can easily be integrated with distributed 
training pipelines
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Where to go from here?

• Another talk on DeepCABAC
• https://slideslive.com/38917367/deepcabac-contextadaptive-binary-arithmetic-

coding-for-deep-neural-network-compression

• Want to learn more about Neural Network Compression and Federated 
Learning?
• http://efficient-ml.org

• DeepCABAC on GitHub
• https://github.com/fraunhoferhhi/DeepCABAC

https://slideslive.com/38917367/deepcabac-contextadaptive-binary-arithmetic-coding-for-deep-neural-network-compression
http://efficient-ml.org/
https://github.com/fraunhoferhhi/DeepCABAC
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