COMPLEXITY ANALYSIS OF NEXT-GENERATION VVC ENCODING AND DECODING

Session: SS-11 -- Complexity Reduction and Real Time Implementations of the Versatile Video Coding Standard

Farhad Pakdaman¹, Mohammad Ali Adelimanesh¹, Moncef Gabbouj², and Mahmoud Reza Hashemi¹

¹School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran

²Department of Computing Sciences, Tampere University, Tampere, Finland

University of Tehran

Versatile Video Coding (VVC)

- VVC (H.266), developed by JVET
 - Growth in spatial, temporal, bit depth, and view dimensions
 - Various devices should support HD video
- Supports different content and applications
 - SDR and HDR
 - Camera and computer generated content
 - Bight-field, depth, and volumetric video
- Finalized on July 2020
 - ~40% bitrate saving compared to HEVC

Complexity analysis of VVC

- High computational complexity for encoding and decoding
 - Real time implementation
 - Low power consumer devices
 - Complexity analysis to measure the design requirements
 - Measure the memory bandwidth requirements

Overview of VVC coding tools

- Block partitioning
 - CTUs as large as 128×128
 - Quad-tree with nested multi-type tree partitioning
- Motion estimation
 - Motion signaled explicitly, skip, or merge
 - Merge mode with motion vector difference (MMVD)
 - Symmetric MVD
 - Affine motion compensation for merge and AMVP
 - Adaptive MVD resolution (1/16 to 4 luma-samples)
 - Triangle partition for inter prediction

Overview of VVC coding tools (cont.)

- Intra prediction
 - of intra modes
 - Non-square blocks and wide-angle modes
 - Multiple reference lines
- Transform
 - $\hfill{\hill{\hill{\hill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hfill{\hill{\hfill{\hfill{\hill{\hill{\hfill{\hill$
 - High-frequency zeroing
 - Multiple transform selection
- Loop filters
 - Deblocking Filter (DBF)
 - Sample Adaptive Offset (SAO)
 - Adaptive Loop Filter (ALF)

Test environment

- VTM 6 and HM 16 as VVC and HEVC codecs
 - Low Delay (LD), Random Access (RA), and All-Intra (AI) configs
 - ^o QPs 22, 27, 32, and 37
- Machine configurations
 - Single thread, Intel core i7 4790K, 4GHz
 - B GBs memory
 - Windows 10
- Test video sequences
 - Six sequences from 720p to 2160p
- Complexity analysis
 - □ Intel VTune™ Amplifier 2019 for
 - Hotspot analysis to measure complexity of each coding tool
 - Memory bandwidth analysis

Sequence	Resolution	Frame rate	Bit depth	Tested configs
BQTerrace	1920×1080	60	8	AI, LD, RA
BasketballDrive	1920×1080	50	8	AI, LD, RA
Cactus	1920×1080	50	8	AI, LD, RA
Johnny	1280×720	60	8	AI, LD, RA
KristenAndSara	1280×720	60	8	AI, LD, RA
DaylightRoad2	3840×2160	60	10	AI, LD

Complexity break-down of encoding

- Increasing the QP will:
 - Increases ME, and LF
 - Decreases T/Q and EC
- Recursive calls over CTU
 structure
 - Reduce max coding depth (QT+MTT depth)

Max Depth	1	2	3	4	3 2 1
Complexity reduction	82%	76%	58%	26%	

VVC vs. HEVC encoding

- Normalized complexity
- LD, RA, and AI are 5x, 7x, and 31x of HEVC encoding
- AI takes 1.3x and 1.4x of LD and RA
- VVC encoding is more QP-dependent (higher quality requires more power as well as higher bitrate)
 - QP=22 is 4.8x of QP=37
 - I.6x for HEVC

Complexity break-down of decoding

- Increasing the QP will
 - Increases MC
 - Decreases ED and IT/IQ

VVC decoding complexity vs. HEVC

- Normalized complexity
- LD, RA, and AI are 1.5x, 1.5x, and 1.8x of HEVC decoding
- AI in VVC takes 2.2 of LD and RA
- VVC decoding is also more QP-dependent
 - QP=22 is 2.3x of QP=37
 - 2x for HEVC

Memory bandwidth requirements

- For 1080p and LD
- Scaled to real-time enc/dec
- 30x and 3x HEVC enc/dec
- Larger maximum CU size, and several prediction candidates

- [22] reports 14.83 GB/s for encoding
 - Reduces to 2.97 via efficient memory sub-system

Conclusion

- New coding tools require new complexity reduction techniques
 - Affine ME, triangle mode, multiple transform cores, ALF, etc.
- Some existing solutions for HEVC can be adapted/extended for VVC
 - Intra prediction [25][26], CTU partitioning [24], fast mode decision [27][28]
 - Parallel processing and pipelining for efficient decoding [31][32]
 - Low-power implementations for ALF, interpolation filter, etc. [29][30]
- Memory access reduction
 - Memory-efficient algorithms [21], data-reuse [23], reference frame compression [20], efficient memory sub-systems [22]

THANKS FOR WATCHING

Questions?

Please email us: farhad.Pakdaman@ut.ac.ir

Please visit our Lab page for other relevant researches in this area:

<u>https://www.researchgate.net/lab/Multimedia-</u> <u>Processing-Laboratory-MPL-Mahmoud-Reza-Hashemi</u>

