

Optimal Power Flow Using Graph Neural Networks

Damian Owerko, Fernando Gama, and Alejandro Ribeiro Dept. of Electrical and Systems Engineering University of Pennsylvania

Supported by NSF CCF 1717120, ARO W911NF1710438, ARL DCIST CRA W911NF-17-2-0181, ISTC-WAS and Intel DevCloud

May 8, 2020 45th Int. Conf. Acoustics, Speech and Signal Processing (ICASSP 2020)

• Electrical grids \Rightarrow of critical importance to our lives

- Electrical grids \Rightarrow of critical importance to our lives
 - \Rightarrow We often do not realize how dependent on electricity we are

• Electrical grids \Rightarrow of critical importance to our lives

 \Rightarrow We often do not realize how dependent on electricity we are

► Electrical grids ⇒ of critical importance to our lives

 \Rightarrow We often do not realize how dependent on electricity we are

► Electrical grids ⇒ of critical importance to our lives

 \Rightarrow We often do not realize how dependent on electricity we are

- ► Electrical grids ⇒ of critical importance to our lives
 - \Rightarrow We often do not realize how dependent on electricity we are

▶ Requires a constant balance between supply and demand ⇒ supply = demand

 $\blacktriangleright \text{ The grid is a network } \Rightarrow \text{power is generated}/\text{demanded at each node by generators}/\text{consumers}$

- ► The grid is a network ⇒ power is generated/demanded at each node by generators/consumers Two key problems in grid management:
 - Power flow ⇒ finding the state = voltages/currents given net power = generated demanded at each node

- ► The grid is a network ⇒ power is generated/demanded at each node by generators/consumers Two key problems in grid management:
 - Power flow ⇒ finding the state = voltages/currents given net power = generated demanded at each node
 - Optimal power flow

- ► The grid is a network ⇒ power is generated/demanded at each node by generators/consumers Two key problems in grid management:
 - Power flow ⇒ finding the state = voltages/currents given net power = generated demanded at each node
 - Optimal power flow
 - \Rightarrow given the demanded power, what is the optimal amount power each generator should produce?

- ► The grid is a network ⇒ power is generated/demanded at each node by generators/consumers Two key problems in grid management:
 - Power flow ⇒ finding the state = voltages/currents given net power = generated demanded at each node
 - Optimal power flow
 - \Rightarrow given the demanded power, what is the optimal amount power each generator should produce?
 - \Rightarrow very difficult due to sinusoidal nature of electrical power

- ► The grid is a network ⇒ power is generated/demanded at each node by generators/consumers Two key problems in grid management:
 - Power flow ⇒ finding the state = voltages/currents given net power = generated demanded at each node
 - Optimal power flow
 - \Rightarrow given the demanded power, what is the optimal amount power each generator should produce?
 - \Rightarrow very difficult due to sinusoidal nature of electrical power
 - \Rightarrow Approximate solutions are either **not-robust**, **costly** or do not **scale**

- ► The grid is a network ⇒ power is generated/demanded at each node by generators/consumers Two key problems in grid management:
 - Power flow ⇒ finding the state = voltages/currents given net power = generated demanded at each node
 - Optimal power flow
 - \Rightarrow given the demanded power, what is the optimal amount power each generator should produce?
 - \Rightarrow very difficult due to sinusoidal nature of electrical power
 - \Rightarrow Approximate solutions are either **not-robust**, **costly** or do not **scale**

Objective

• Use graph neural networks to learn the optimal power allocation in a network.

- ► The grid is a network ⇒ power is generated/demanded at each node by generators/consumers Two key problems in grid management:
 - Power flow ⇒ finding the state = voltages/currents given net power = generated demanded at each node
 - Optimal power flow
 - \Rightarrow given the demanded power, what is the optimal amount power each generator should produce?
 - \Rightarrow very difficult due to sinusoidal nature of electrical power
 - \Rightarrow Approximate solutions are either **not-robust**, **costly** or do not **scale**

Objective

- ▶ Use graph neural networks to learn the optimal power allocation in a network.
 - \Rightarrow Local computations, distributed implementations, scalability

Electrical Grids as Graphs

Graph Neural Networks

Imitating Optimal Power Flow

Conclusions

Electrical Grids as Graphs

Graph Neural Networks

Imitating Optimal Power Flow

Conclusions

Each node in an electrical grid can generate/consume electricity

- Each node in an electrical grid can generate/consume electricity
- ▶ The state of the *n*th node is expressed by 4 real scalars:

 $v_n \Rightarrow$ The voltage at the node

- Each node in an electrical grid can generate/consume electricity
- ▶ The state of the *n*th node is expressed by 4 real scalars:

 $\delta_n \Rightarrow$ The voltage angle at the node

- Each node in an electrical grid can generate/consume electricity
- ▶ The state of the *n*th node is expressed by 4 real scalars:

 $p_n \Rightarrow$ The net active power flowing into the node

- Each node in an electrical grid can generate/consume electricity
- ▶ The state of the *n*th node is expressed by 4 real scalars:

 $q_n \Rightarrow$ The net reactive power flowing into the node

- Each node in an electrical grid can generate/consume electricity
- ▶ The state of the *n*th node is expressed by 4 real scalars:
 - $v_n \Rightarrow$ The voltage at the node
 - $\delta_n \Rightarrow \text{The voltage angle at the node}$
 - $p_n \Rightarrow$ The net active power flowing into the node
 - $q_n \Rightarrow$ The net reactive power flowing into the node

$$\mathbf{x}_n = \begin{bmatrix} \mathbf{v}_n & \delta_n & \mathbf{p}_n & \mathbf{q}_n \end{bmatrix}$$

- Each node in an electrical grid can generate/consume electricity
- The state of the *n*th node is expressed by 4 real scalars:

$$\mathbf{x}_n = egin{bmatrix} \mathbf{v}_n & \delta_n & p_n & q_n \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{v} & \boldsymbol{\delta} & \mathbf{p} & \mathbf{q} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1^T & \dots & \mathbf{x}_n^T & \dots & \mathbf{x}_N^T \end{bmatrix}^T$$

- Each node in an electrical grid can generate/consume electricity
- The state of the *n*th node is expressed by 4 real scalars:

$$\mathbf{x}_n = \begin{bmatrix} \mathbf{v}_n & \delta_n & \mathbf{p}_n & \mathbf{q}_n \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{v} & \boldsymbol{\delta} & \mathbf{p} & \mathbf{q} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1^T & \dots & \mathbf{x}_n^T & \dots & \mathbf{x}_N^T \end{bmatrix}^T$$

► The physical characteristics of the grid are described by the power flow equations

 $\mathbf{p} = \mathcal{P}(\mathbf{v}, \boldsymbol{\delta}; \mathbf{W})$ $\mathbf{q} = \mathcal{Q}(\mathbf{v}, \boldsymbol{\delta}; \mathbf{W})$

- Each node in an electrical grid can generate/consume electricity
- The state of the *n*th node is expressed by 4 real scalars:

$$\mathbf{x}_n = \begin{bmatrix} \mathbf{v}_n & \delta_n & \mathbf{p}_n & \mathbf{q}_n \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{v} & \boldsymbol{\delta} & \mathbf{p} & \mathbf{q} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1^T & \dots & \mathbf{x}_n^T & \dots & \mathbf{x}_N^T \end{bmatrix}^T$$

► The physical characteristics of the grid are described by the power flow equations

 $egin{aligned} \mathbf{p} &= \mathcal{P}(\mathbf{v}, oldsymbol{\delta}; \mathbf{W}) \ \mathbf{q} &= \mathcal{Q}(\mathbf{v}, oldsymbol{\delta}; \mathbf{W}) \end{aligned}$

 \Rightarrow Relate local net power generation with the global state

- Each node in an electrical grid can generate/consume electricity
- The state of the *n*th node is expressed by 4 real scalars:

$$\mathbf{x}_n = egin{bmatrix} \mathbf{v}_n & \delta_n & p_n & q_n \end{bmatrix}$$

$$\mathbf{X} = [\mathbf{v} \ \mathbf{\delta} \ \mathbf{p} \ \mathbf{q}] = [\mathbf{x}_1^T \ \dots \ \mathbf{x}_n^T \ \dots \ \mathbf{x}_N^T]^T$$

► The physical characteristics of the grid are described by the power flow equations

 $\mathbf{p} = \mathcal{P}(\mathbf{v}, oldsymbol{\delta}; \mathbf{W})$ $\mathbf{q} = \mathcal{Q}(\mathbf{v}, oldsymbol{\delta}; \mathbf{W})$

- \Rightarrow Relate local net power generation with the global state
- \Rightarrow Depends on the topology \bm{W} of the grid W is the set of electrical components in the grid

Thus optimal power flow is a minimization problem

$$\underset{\{p_n\}}{\text{minimize}} \sum_{n=1}^{N} c_n(p_n, q_n)$$
(1)

(5)

Where,

 $\Rightarrow c_n(p_n, q_n)$ is the cost to generate power at the *n*th node

Thus optimal power flow is a minimization problem

$$\underset{\{p_n\}}{\text{minimize}} \sum_{n=1}^{N} c_n(p_n, q_n)$$
(1)

subject to
$$\mathbf{p} = \mathcal{P}(\mathbf{v}, \boldsymbol{\delta}; \mathbf{W}),$$
 (2)

$$\mathbf{q} = \mathcal{Q}(\mathbf{v}, \boldsymbol{\delta}; \mathbf{W}), \tag{3}$$

(5)

Where,

- \Rightarrow $c_n(p_n, q_n)$ is the cost to generate power at the *n*th node
- \Rightarrow (2) and (3) are the powerflow equations \Rightarrow sinusoidal constraints

Thus optimal power flow is a minimization problem

$$\underset{\{p_n\}}{\text{minimize}} \sum_{n=1}^{N} c_n(p_n, q_n)$$
(1)

subject to
$$\mathbf{p} = \mathcal{P}(\mathbf{v}, \boldsymbol{\delta}; \mathbf{W}),$$
 (2)

$$\mathbf{q} = \mathcal{Q}(\mathbf{v}, \boldsymbol{\delta}; \mathbf{W}), \tag{3}$$

$$\mathbf{X}^{\min} \preceq \mathbf{X} \preceq \mathbf{X}^{\max}.$$
 (4)

(5)

Where,

- \Rightarrow $c_n(p_n, q_n)$ is the cost to generate power at the *n*th node
- \Rightarrow (2) and (3) are the powerflow equations \Rightarrow sinusoidal constraints
- \Rightarrow $\textbf{X}^{\textit{min}}$ and $\textbf{X}^{\textit{max}}$ collect the minimum and maximum values each state entry can take

$$\Rightarrow \mathbf{X} \preceq \mathbf{Y} \iff [\mathbf{X}]_{ij} \leq [\mathbf{Y}]_{ij}$$

DCOPF

- Most commonly used in practice
- Uses small angle approximations to linearize

 $\boldsymbol{\delta}=\mathbf{0}$

 Assumption invalid for moderately/heavily loaded grids

DCOPF

- Most commonly used in practice
- Uses small angle approximations to linearize

 $\boldsymbol{\delta}=\mathbf{0}$

 Assumption invalid for moderately/heavily loaded grids

ACOPF

- Provides exact solution to OPF
- Solved using interior point methods (IPOPT)
- Very slow for large networks
 - \Rightarrow Impractical for real-time optimization

Electrical Grids as Graphs

Graph Neural Networks

Imitating Optimal Power Flow

Conclusions

Electrical grid weighted graph

IEEE118 Power System Network

- Electrical grid ⇒ weighted graph
- Nodes produce/consume power

IEEE118 Power System Network

- Electrical grid weighted graph
- Nodes produce/consume power
- Edges represent electrical connections between nodes

IEEE118 Power System Network

- ► Electrical grid ⇒ weighted graph
- Nodes produce/consume power
- Edges represent electrical connections between nodes
- ▶ State matrix $\mathbf{X} \in \mathbb{R}^{N \times 4} =$ graph signal with 4 features
 - \Rightarrow Each row is the state of the corresponding node

IEEE118 Power System Network

- ► Electrical grid ⇒ weighted graph
- Nodes produce/consume power
- Edges represent electrical connections between nodes
- ▶ State matrix $\mathbf{X} \in \mathbb{R}^{N \times 4} =$ graph signal with 4 features
 - \Rightarrow Each row is the state of the corresponding node
- Adjacency matrix **A** = Gaussian kernel of impedance

IEEE118 Power System Network

- ► Electrical grid ⇒ weighted graph
- Nodes produce/consume power
- Edges represent electrical connections between nodes
- ▶ State matrix $\mathbf{X} \in \mathbb{R}^{N \times 4} =$ graph signal with 4 features
 - \Rightarrow Each row is the state of the corresponding node
- Adjacency matrix **A** = Gaussian kernel of impedance
 - \Rightarrow How close the two nodes are two each other

$$\mathbf{A}_{ij} = exp(-k|z_{ij}|^2)$$

IEEE118 Power System Network

Where z_{ij} is the line impedance

- ► Electrical grid ⇒ weighted graph
- Nodes produce/consume power
- Edges represent electrical connections between nodes
- ▶ State matrix $\mathbf{X} \in \mathbb{R}^{N \times 4} =$ graph signal with 4 features
 - \Rightarrow Each row is the state of the corresponding node
- Adjacency matrix A = Gaussian kernel of impedance
 - \Rightarrow How close the two nodes are two each other

$$egin{aligned} & w_{ij} = exp(-k|z_{ij}|^2) \ & \mathbf{A}_{ij} = egin{cases} & w_{ij}, & ext{if } w_{ij} > w \ 0, & ext{otherwise} \end{aligned}$$

IEEE118 Power System Network

Where z_{ij} is the line impedance

Optimal Power Flow

Electrical Grids as Graphs

Graph Neural Networks

Imitating Optimal Power Flow

Conclusions

• Graph convolution \Rightarrow Linear combination of shifted versions of the signal x

$$\mathbf{x} \ast \mathbf{h} = \sum_{k=0}^{K-1} \mathbf{h}_k \mathbf{x}_{n-k}$$

• Graph convolution \Rightarrow Linear combination of shifted versions of the signal x

$$\mathbf{x} \ast \mathbf{h} = \sum_{k=0}^{K-1} \mathbf{h}_k \mathbf{x}_{n-k}$$

▶ Notion of shift **S** ⇒ Matrix description of graph (adjacency, Laplacian)

$$\mathbf{x} *_{\mathbf{S}} \mathbf{h} = \sum_{k=0}^{K-1} h_k \mathbf{S}^k \mathbf{x}$$

▶ Notion of shift $S \Rightarrow$ Matrix description of graph \Rightarrow Sx shifts the signal x

• Graph convolution \Rightarrow Linear combination of shifted versions of the signal x

$$\mathbf{x} *_{\mathbf{S}} \mathbf{h} = \sum_{k=0}^{K-1} \mathbf{h}_k \mathbf{S}^k \mathbf{x}$$

▶ Notion of shift $S \Rightarrow$ Matrix description of graph $\Rightarrow Sx$ shifts the signal x

• Graph convolution \Rightarrow Linear combination of shifted versions of the signal x

$$\mathbf{x} *_{\mathbf{S}} \mathbf{h} = \sum_{k=0}^{K-1} \mathbf{h}_k \mathbf{S}^k \mathbf{x}$$

▶ Notion of shift $S \Rightarrow$ Matrix description of graph \Rightarrow Sx shifts the signal x

• Graph convolution \Rightarrow Linear combination of shifted versions of the signal x

$$\mathbf{x} *_{\mathbf{S}} \mathbf{h} = \sum_{k=0}^{K-1} h_k \mathbf{S}^k \mathbf{x}$$

▶ Notion of shift $S \Rightarrow$ Matrix description of graph \Rightarrow Sx shifts the signal x

• Graph convolution \Rightarrow Linear combination of shifted versions of the signal x

$$\mathbf{x} *_{\mathbf{S}} \mathbf{h} = \sum_{k=0}^{K-1} h_k \mathbf{S}^k \mathbf{x}$$

▶ Notion of shift $S \Rightarrow$ Matrix description of graph \Rightarrow Sx shifts the signal x

• Graph convolution \Rightarrow Linear combination of shifted versions of the signal

$$\mathbf{x} *_{\mathbf{S}} \mathbf{h} = \sum_{k=0}^{K-1} h_k \mathbf{S}^k \mathbf{x} = \mathbf{H}(\mathbf{S}) \mathbf{x}$$

- ▶ Notion of shift $S \Rightarrow$ Matrix description of graph (adjacency, Laplacian)
- ► Linear combination of neighboring signal ⇒ Local operation

- Cascade of L layers
 - \Rightarrow Graph convolutions with filters $\mathcal{H} = \{\mathbf{h}_{\ell}\}$
 - \Rightarrow Pointwise nonlinearity (activation functions)

- Cascade of L layers
 - \Rightarrow Graph convolutions with filters $\mathcal{H} = \{\mathbf{h}_{\ell}\}$
 - \Rightarrow Pointwise nonlinearity (activation functions)

- Cascade of L layers
 - \Rightarrow Graph convolutions with filters $\mathcal{H} = \{\boldsymbol{h}_\ell\}$
 - \Rightarrow Pointwise nonlinearity (activation functions)
- ► The GNN $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H})$ depends on the filters \mathcal{H}
 - \Rightarrow Learn filter taps \mathcal{H} from training data
 - \Rightarrow Also depends on the graph **S**

- Cascade of L layers
 - \Rightarrow Graph convolutions with filters $\mathcal{H} = \{\boldsymbol{h}_\ell\}$
 - \Rightarrow Pointwise nonlinearity (activation functions)
- The GNN $\Phi(x; S, \mathcal{H})$ depends on the filters \mathcal{H}
 - \Rightarrow Learn filter taps ${\cal H}$ from training data
 - \Rightarrow Also depends on the graph ${\bf S}$
- Nonlinear mapping $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H})$
 - \Rightarrow Exploit underlying graph structure S
 - \Rightarrow Local information
 - \Rightarrow **Distributed** implementation

Optimal Power Flow

Electrical Grids as Graphs

Graph Neural Networks

Imitating Optimal Power Flow

Conclusions

• We use the GNN as a model $\Phi(X; A, H)$

- We use the GNN as a model $\Phi(X; A, H)$
- ▶ Want to imitate the OPF solution **p**^{*}

- We use the GNN as a model $\Phi(X; A, H)$
- Want to imitate the OPF solution p*
 - $\Rightarrow \mathsf{Want} \text{ to minimize a loss } \mathcal{L} \text{ over a } \mathsf{dataset} \ \mathcal{T} = \{(\textbf{X}, \textbf{p}^*)\}$

$$\min_{\mathcal{H}} \sum_{\mathcal{T}} \mathcal{L} \Big(\mathbf{p}^*, \mathbf{\Phi}(\mathbf{X}; \mathbf{A}, \mathcal{H}) \Big)$$

- We use the GNN as a model $\Phi(X; A, H)$
- Want to imitate the OPF solution p*
 - \Rightarrow Want to minimize a loss \mathcal{L} over a dataset $\mathcal{T} = \{(\mathbf{X}, \mathbf{p}^*)\}$

$$\min_{\mathcal{H}} \sum_{\mathcal{T}} \mathcal{L} \Big(\mathbf{p}^*, \mathbf{\Phi}(\mathbf{X}; \mathbf{A}, \mathcal{H}) \Big)$$

 $\Rightarrow \mathsf{We} \text{ use } \mathcal{L} = \mathsf{MSE}$

- We use the GNN as a model $\Phi(X; A, H)$
- Want to imitate the OPF solution p*
 - \Rightarrow Want to minimize a loss \mathcal{L} over a dataset $\mathcal{T} = \{(\mathbf{X}, \mathbf{p}^*)\}$

$$\min_{\mathcal{H}} \sum_{\mathcal{T}} \mathcal{L} \Big(\mathbf{p}^*, \mathbf{\Phi}(\mathbf{X}; \mathbf{A}, \mathcal{H}) \Big)$$

 $\Rightarrow \mathsf{We} \text{ use } \mathcal{L} = \mathsf{MSE}$

• Once Φ is trained we do not need the costly \mathbf{p}^* to make predictions

 \blacktriangleright We construct ${\cal T}$ using the IEEE power system test cases – IEEE30 and IEEE118

- We construct T using the IEEE power system test cases IEEE30 and IEEE118
 - \Rightarrow Each test case describes the grid structure, constraints, and provides reference loads $\mathbf{P}_{ref}^{L}, \mathbf{Q}_{ref}^{L}$

- We construct T using the IEEE power system test cases IEEE30 and IEEE118
 - \Rightarrow Each test case describes the grid structure, constraints, and provides reference loads $\mathbf{P}_{ref}^{L}, \mathbf{Q}_{ref}^{L}$ \Rightarrow We want to test our model under varying conditions \Rightarrow sample a uniform distribution around the reference loads

le reference loads

$$\begin{split} \mathbf{p}^{L} &\sim \mathsf{Uniform}(0.9 \; \mathbf{p}_{\mathsf{ref}}^{L}, 1.1 \; \mathbf{p}_{\mathsf{ref}}^{L}) \\ \mathbf{q}^{L} &\sim \mathsf{Uniform}(0.9 \; \mathbf{q}_{\mathsf{ref}}^{L}, 1.1 \; \mathbf{q}_{\mathsf{ref}}^{L}) \end{split}$$

- We construct T using the IEEE power system test cases IEEE30 and IEEE118
 - \Rightarrow Each test case describes the grid structure, constraints, and provides reference loads $\mathbf{P}_{ref}^{L}, \mathbf{Q}_{ref}^{L}$ \Rightarrow We want to test our model under varying conditions \Rightarrow sample a uniform distribution around the reference loads

$$\mathbf{p}^L \sim \mathsf{Uniform}(0.9 \; \mathbf{p}_{\mathsf{ref}}^L, 1.1 \; \mathbf{p}_{\mathsf{ref}}^L)$$

 $\mathbf{q}^L \sim \mathsf{Uniform}(0.9 \; \mathbf{q}_{\mathsf{ref}}^L, 1.1 \; \mathbf{q}_{\mathsf{ref}}^L)$

For each load sample $\mathbf{p}^L, \mathbf{q}^L$

- We construct T using the IEEE power system test cases IEEE30 and IEEE118
 - \Rightarrow Each test case describes the grid structure, constraints, and provides reference loads $\mathbf{P}_{ref}^{L}, \mathbf{Q}_{ref}^{L}$ \Rightarrow We want to test our model under varying conditions \Rightarrow sample a uniform distribution around the reference loads

$$\mathbf{p}^L \sim \mathsf{Uniform}(0.9 \; \mathbf{p}_{\mathsf{ref}}^L, 1.1 \; \mathbf{p}_{\mathsf{ref}}^L)$$

 $\mathbf{q}^L \sim \mathsf{Uniform}(0.9 \; \mathbf{q}_{\mathsf{ref}}^L, 1.1 \; \mathbf{q}_{\mathsf{ref}}^L)$

For each load sample $\mathbf{p}^L, \mathbf{q}^L$

- We construct \mathcal{T} using the IEEE power system test cases IEEE30 and IEEE118
 - \Rightarrow Each test case describes the grid structure, constraints, and provides reference loads $\mathbf{P}_{ref}^{L}, \mathbf{Q}_{ref}^{L}$ \Rightarrow We want to test our model under varying conditions \Rightarrow sample a uniform distribution around the reference loads

$$\begin{split} \mathbf{p}^{L} &\sim \mathsf{Uniform}(0.9 \; \mathbf{p}_{\mathsf{ref}}^{L}, 1.1 \; \mathbf{p}_{\mathsf{ref}}^{L}) \\ \mathbf{q}^{L} &\sim \mathsf{Uniform}(0.9 \; \mathbf{q}_{\mathsf{ref}}^{L}, 1.1 \; \mathbf{q}_{\mathsf{ref}}^{L}) \end{split}$$

For each load sample $\mathbf{p}^L, \mathbf{q}^L$

 $\mathbf{X} =$ the sub-optimal state \Rightarrow the DC-OPF solution to the case

- We construct \mathcal{T} using the IEEE power system test cases IEEE30 and IEEE118
 - \Rightarrow Each test case describes the grid structure, constraints, and provides reference loads $\mathbf{P}_{ref}^{L}, \mathbf{Q}_{ref}^{L}$ \Rightarrow We want to test our model under varying conditions \Rightarrow sample a uniform distribution around the reference loads

$$\begin{split} \boldsymbol{p}^L &\sim \mathsf{Uniform}(0.9 \; \boldsymbol{p}_{\mathsf{ref}}^L, 1.1 \; \boldsymbol{p}_{\mathsf{ref}}^L) \\ \boldsymbol{q}^L &\sim \mathsf{Uniform}(0.9 \; \boldsymbol{q}_{\mathsf{ref}}^L, 1.1 \; \boldsymbol{q}_{\mathsf{ref}}^L) \end{split}$$

► For each load sample \mathbf{p}^{L} , \mathbf{q}^{L} $\mathbf{X} = \text{the sub-optimal state} \Rightarrow \text{the DC-OPF}$ solution to the case $\mathbf{p}^{*} = \text{the optimal AC-OPF}$ solution obtained using **IPOPT** \Rightarrow costly, only needed during training

We compare GNNs against Multi-Layer Perceptrons

Global vs Local MLP

Note the difference between the Global and Local MLP. In the latter architecture there are N independent neural networks, one for each node.

Global vs Local MLP

Note the difference between the Global and Local MLP. In the latter architecture there are N independent neural networks, one for each node.

We compare GNNs against Multi-Layer Perceptrons

Global vs Local MLP

Note the difference between the Global and Local MLP. In the latter architecture there are N independent neural networks, one for each node.

▶ We train the models under MSE loss on data synthesized from IEEE30 and IEEE118 test cases

- ▶ We train the models under MSE loss on data synthesized from IEEE30 and IEEE118 test cases
 - \Rightarrow We compare the RMSE for all four models

IEEE30	GNN	MLP
Global	0.061	0.090
Local	0.139	0.161

IEEE118	GNN	MLP
Global	0.00306	0.00958
Local	0.03038	0.35932

- ▶ We train the models under MSE loss on data synthesized from IEEE30 and IEEE118 test cases
 - \Rightarrow We compare the RMSE for all four models

IEEE30	GNN	MLP	IEEE118	GNN	MLP
Global	0.061	0.090	Global	0.00306	0.0095
Local	0.139	0.161	Local	0.03038	0.3593

► GNNs outperform MLPs in all experimental categories ⇒ This is more prominent on the IEEE118 dataset

- ▶ We train the models under MSE loss on data synthesized from IEEE30 and IEEE118 test cases
 - \Rightarrow We compare the RMSE for all four models

IEEE30	GNN	MLP	IE	EE118	GNN	
Global	0.061	0.090	(Global	0.00306	
Local	0.139	0.161		Local	0.03038	

- GNNs outperform MLPs in all experimental categories \Rightarrow This is more prominent on the IEEE118 dataset
 - \Rightarrow 213% improvement of Global GNN over Global MLP

- We train the models under MSE loss on data synthesized from IEEE30 and IEEE118 test cases
 - \Rightarrow We compare the RMSE for all four models

IEEE30	GNN	MLP
Global	0.061	0.090
Local	0.139	0.161

IEEE118	GNN	MLP
Global	0.00306	0.00958
Local	0.03038	0.35932

- ► GNNs outperform MLPs in all experimental categories ⇒ This is more prominent on the IEEE118 dataset
 - \Rightarrow 213% improvement of Global GNN over Global MLP
 - \Rightarrow 1082% improvement of Local GNN over Local MLP

- We train the models under MSE loss on data synthesized from IEEE30 and IEEE118 test cases
 - \Rightarrow We compare the RMSE for all four models

IEEE30	GNN	MLP
Global	0.061	0.090
Local	0.139	0.161

IEEE118	GNN	MLP
Global	0.00306	0.00958
Local	0.03038	0.35932

- ► GNNs outperform MLPs in all experimental categories ⇒ This is more prominent on the IEEE118 dataset
 - \Rightarrow 213% improvement of Global GNN over Global MLP
 - \Rightarrow 1082% improvement of Local GNN over Local MLP
- GNNs are also much faster than traditional methods

- We train the models under MSE loss on data synthesized from IEEE30 and IEEE118 test cases
 - \Rightarrow We compare the RMSE for all four models

IEEE30	GNN	MLP
Global	0.061	0.090
Local	0.139	0.161

IEEE118	GNN	MLP
Global	0.00306	0.00958
Local	0.03038	0.35932

- ► GNNs outperform MLPs in all experimental categories ⇒ This is more prominent on the IEEE118 dataset
 - \Rightarrow 213% improvement of Global GNN over Global MLP
 - \Rightarrow 1082% improvement of Local GNN over Local MLP
- GNNs are also much faster than traditional methods
 - \Rightarrow Finding p^* using IPOPT takes 2s for IEEE30 18s for IEEE118

- We train the models under MSE loss on data synthesized from IEEE30 and IEEE118 test cases
 - \Rightarrow We compare the RMSE for all four models

IEEE30	GNN	MLP
Global	0.061	0.090
Local	0.139	0.161

IEEE118	GNN	MLP
Global	0.00306	0.00958
Local	0.03038	0.35932

- ► GNNs outperform MLPs in all experimental categories ⇒ This is more prominent on the IEEE118 dataset
 - \Rightarrow 213% improvement of Global GNN over Global MLP
 - \Rightarrow 1082% improvement of Local GNN over Local MLP
- GNNs are also much faster than traditional methods
 - \Rightarrow Finding p^* using IPOPT takes 2s for IEEE30 18s for IEEE118
 - \Rightarrow The GNN takes \approx 50 μs to make predictions \Rightarrow GNNs are 10⁵ times faster

- Solving OPF is central to electrical grid operation
- ▶ OPF \Rightarrow How to satisfy demand while **minimizing** operational costs?
 - \Rightarrow Non-linear constrains \Rightarrow computationally expensive (NP hard)
- GNNs are well suited to applications on the electrical grid
 - \Rightarrow Scalable \Rightarrow number of taps independent on network size
 - \Rightarrow Exploit the network structure of the data
- GNNs are up to 10^5 times faster than IPOPT

Thank You!