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Electrical Grids

I Electrical grids ⇒ of critical importance to our lives

⇒ We often do not realize how dependent on electricity we are

I Requires a constant balance between supply and demand ⇒ supply = demand

owerko@seas.upen.edu Optimal Power Flow Using Graph Neural Networks 2/19



Electrical Grids

I Electrical grids ⇒ of critical importance to our lives

⇒ We often do not realize how dependent on electricity we are

I Requires a constant balance between supply and demand ⇒ supply = demand

owerko@seas.upen.edu Optimal Power Flow Using Graph Neural Networks 2/19



Electrical Grids

I Electrical grids ⇒ of critical importance to our lives

⇒ We often do not realize how dependent on electricity we are

I Requires a constant balance between supply and demand ⇒ supply = demand

owerko@seas.upen.edu Optimal Power Flow Using Graph Neural Networks 2/19



Electrical Grids

I Electrical grids ⇒ of critical importance to our lives

⇒ We often do not realize how dependent on electricity we are

I Requires a constant balance between supply and demand ⇒ supply = demand

owerko@seas.upen.edu Optimal Power Flow Using Graph Neural Networks 2/19



Electrical Grids

I Electrical grids ⇒ of critical importance to our lives

⇒ We often do not realize how dependent on electricity we are

I Requires a constant balance between supply and demand ⇒ supply = demand

owerko@seas.upen.edu Optimal Power Flow Using Graph Neural Networks 2/19



Electrical Grids

I Electrical grids ⇒ of critical importance to our lives

⇒ We often do not realize how dependent on electricity we are

I Requires a constant balance between supply and demand ⇒ supply = demand

owerko@seas.upen.edu Optimal Power Flow Using Graph Neural Networks 2/19



Optimal Power Flow

I The grid is a network ⇒ power is generated/demanded at each node by generators/consumers

Two key problems in grid management:

I Power flow ⇒ finding the state = voltages/currents given net power = generated - demanded at
each node

I Optimal power flow

⇒ given the demanded power, what is the optimal amount power each generator should produce?

⇒ very difficult due to sinusoidal nature of electrical power

⇒ Approximate solutions are either not-robust, costly or do not scale

Objective

I Use graph neural networks to learn the optimal power allocation in a network.

⇒ Local computations, distributed implementations, scalability
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Optimal Power Flow

I Each node in an electrical grid can generate/consume electricity

I The state of the nth node is expressed by 4 real scalars:

vn ⇒ The voltage at the node

δn ⇒ The voltage angle at the node

pn ⇒ The net active power flowing into the node

qn ⇒ The net reactive power flowing into the node

xn =
[
vn δn pn qn

]
I The state of the whole grid is

X =
[
v δ p q

]
=
[
xT
1 . . . xT

n . . . xT
N

]T
I The physical characteristics of the grid are described by the power flow equations

p = P(v, δ; W)

q = Q(v, δ; W)

⇒ Relate local net power generation with the global state

⇒ Depends on the topology W of the grid W is the set of electrical components in the grid
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Optimal Power Flow

I Thus optimal power flow is a minimization problem

minimize
{pn}

N∑
n=1

cn(pn, qn) (1)

subject to p = P(v, δ; W), (2)

q = Q(v, δ; W), (3)

Xmin � X � Xmax. (4)

(5)

I Where,

⇒ cn(pn, qn) is the cost to generate power at the nth node

⇒ (2) and (3) are the powerflow equations ⇒ sinusoidal constraints

⇒ Xmin and Xmax collect the minimum and maximum values each state entry can take

⇒ X � Y ⇐⇒ [X]ij ≤ [Y]ij
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Common Approaches

DCOPF

I Most commonly used in practice

I Uses small angle approximations to linearize

δ = 0

I Assumption invalid for moderately/heavily
loaded grids

ACOPF

I Provides exact solution to OPF

I Solved using interior point methods (IPOPT)

I Very slow for large networks

⇒ Impractical for real-time optimization
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GNNs on Electrical Grids

Optimal Power Flow

Electrical Grids as Graphs

Graph Neural Networks

Imitating Optimal Power Flow

Conclusions
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Electrical Grids as Graphs

I Electrical grid ⇒ weighted graph

I Nodes produce/consume power

I Edges represent electrical connections between nodes

I State matrix X ∈ RN×4 = graph signal with 4 features

⇒ Each row is the state of the corresponding node

I Adjacency matrix A = Gaussian kernel of impedance

⇒ How close the two nodes are two each other

Aij = exp(−k|zij |2)

Aij =

{
wij , if wij > w

0, otherwise

I Where zij is the line impedance

IEEE118 Power System Network
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Graph Neural Networks

Optimal Power Flow

Electrical Grids as Graphs

Graph Neural Networks

Imitating Optimal Power Flow

Conclusions
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Graph Convolutions

I Graph convolution ⇒ Linear combination of shifted versions of the signal x

x ∗ h =

K−1∑
k=0

hk xn−k

I Notion of shift S ⇒ Matrix description of graph (adjacency, Laplacian)

x

x1

x2

x3 x4
x0

x1

x2

x3
x−1

x0
x1

x2
x−2 x−1

x0
x1

z−1 z−1 z−1

+ + + +

xn xn−1 xn−2 xn−3

h0 h1 h2 h3

h ∗ x

Gama, Marques, Leus, Ribeiro, “Convolutional Graph Neural Networks”, Asilomar, 2019.
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Graph Convolutions

I Graph convolution ⇒ Linear combination of shifted versions of the signal x
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Graph Convolutions

I Graph convolution ⇒ Linear combination of shifted versions of the signal

x ∗S h =

K−1∑
k=0

hk Skx = H(S)x

I Notion of shift S ⇒ Matrix description of graph (adjacency, Laplacian)

I Linear combination of neighboring signal ⇒ Local operation
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Graph Neural Networks

I Cascade of L layers

⇒ Graph convolutions with filters H = {h`}
⇒ Pointwise nonlinearity (activation functions)

I The GNN Φ(x; S,H) depends on the filters H
⇒ Learn filter taps H from training data

⇒ Also depends on the graph S

I Nonlinear mapping Φ(x; S,H)

⇒ Exploit underlying graph structure S

⇒ Local information

⇒ Distributed implementation

Layer 1

x

z1 =

K−1∑
k=0

h1kSk x x1 = σ
[

z1
]z1

x1

Gama, Marques, Leus, Ribeiro, “Convolutional Neural Network Architectures for Signals Supported on Graphs”, IEEE TSP, 2019
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Imitating Optimal Power Flow

I We use the GNN as a model Φ(X; A,H)

I Want to imitate the OPF solution p∗

⇒ Want to minimize a loss L over a dataset T = {(X, p∗)}

min
H

∑
T

L
(

p∗,Φ(X; A,H)
)

⇒ We use L = MSE

I Once Φ is trained we do not need the costly p∗ to make predictions
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Dataset Construction

I We construct T using the IEEE power system test cases – IEEE30 and IEEE118

⇒ Each test case describes the grid structure, constraints, and provides reference loads PL
ref ,Q

L
ref

⇒ We want to test our model under varying conditions ⇒ sample a uniform distribution around
the reference loads

pL ∼ Uniform(0.9 pL
ref, 1.1 pL

ref)

qL ∼ Uniform(0.9 qL
ref, 1.1 qL

ref)

I For each load sample pL, qL

X = the sub-optimal state ⇒ the DC-OPF solution to the case

p∗ = the optimal AC-OPF solution obtained using IPOPT ⇒ costly, only needed during training
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Imitating Optimal Power Flow

I We compare GNNs against Multi-Layer Perceptrons

Global GNN

X GNN FC p̂

Local GNN

X GNN p̂

Global MLP

X MLP p̂

Local MLP

xn
MLPMLPMLP p̂n

Global vs Local MLP
Note the difference between the Global and Local MLP. In the latter architecture there are N
independent neural networks, one for each node.
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Numerical Experiments

I We train the models under MSE loss on data synthesized from IEEE30 and IEEE118 test cases

⇒ We compare the RMSE for all four models

IEEE30 GNN MLP
Global 0.061 0.090
Local 0.139 0.161

IEEE118 GNN MLP
Global 0.00306 0.00958
Local 0.03038 0.35932

I GNNs outperform MLPs in all experimental categories ⇒ This is more prominent on the IEEE118
dataset

⇒ 213% improvement of Global GNN over Global MLP

⇒ 1082% improvement of Local GNN over Local MLP

I GNNs are also much faster than traditional methods

⇒ Finding p∗ using IPOPT takes 2s for IEEE30 18s for IEEE118

⇒ The GNN takes ≈ 50µs to make predictions ⇒ GNNs are 105 times faster
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Conclusions

I Solving OPF is central to electrical grid operation

I OPF ⇒ How to satisfy demand while minimizing operational costs?

⇒ Non-linear constrains ⇒ computationally expensive (NP hard)

I GNNs are well suited to applications on the electrical grid

⇒ Scalable ⇒ number of taps independent on network size

⇒ Exploit the network structure of the data

I GNNs are up to 105 times faster than IPOPT

Thank You!
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