Session ARS-18

Machine Learning for Recognition in Images and Videos II

Visual Relationship Classification with Negative-Sample Mining

Roberto de Moura Estevão Filho

robertomest@poli.ufrj.br

Federal University of Rio de Janeiro

José Gabriel Rodríguez Carneiro Gomes

Federal University of Rio de Janeiro

Leonardo de Oliveira Nunes

Microsoft Advanced Technology Labs Brazil

- Problem Definition
- Dataset
- Network Architecture
- Training Procedure
- Experiments
- Conclusions

- Problem Definition
- Dataset
- Network Architecture
- Training Procedure
- Experiments
- Conclusions

Problem Definition

- Relationships are triplets < subject predicate object>
- Visual relationship classification is assigning predicates to object pairs
- An object pair is an ordered pair with a subject and an object
- The **predicate indicates** the **relationship** between the objects

Problem Definition

dog1 - lick - person1

person1 - hold - dog1

Problem Definition

- Most work focuses on using relationships as content descriptors
- Datasets are usually not exhaustively annotated
- Evaluation based on recall
- We focus on event detection
- Important to avoid false positives. Needs high precision
- We adopt **mAP as our evaluation metric**

- Problem Definition
- Dataset
- Network Architecture
- Training Procedure
- Experiments
- Conclusions

Dataset

- Open Images dataset
- 9 predicate classes
- Relationships are exhaustively annotated
- Almost 60k images and over 180k relationships
- 97% of possible pairings have no relationship
- Class imbalance
 - Most common predicate has over 100k samples
 - Least common has 34 samples

- Problem Definition
- Dataset
- Network Architecture
- Training Procedure
- Experiments
- Conclusions

Network Architecture

- Neural network that incorporates three types of information
- Visual: CNN
- Spatial: CoordConv-like explicit positional encoding feature maps
- Object class: learned class embeddings

Network Architecture

Network Architecture – Visual Module

- Divided in three main stages
 - Stage 1: extracts features from the whole image
 - Resampler: obtains features for subject, object, and union Rols
 - Stage 2: Rols are processed independently
 - Stage 3: extracts features by combining information from all three Rol feature maps
 - Output layer: FC layer that maps features into an output visual feature vector

Network Architecture – Visual Module

- Stages 1 and 2: layers from ResNet-18 pretrained on ImageNet
- Features are resampled using RolAlign
- Stage 3: two convolutional layers with 512 filters followed by GAP

Network Architecture – CoordConv

- Explicit positional encoding feature maps added to the output of stage 2
- Encode interpolated pixel **positions relative to** the **union Rol**
- Relative **position** and **scale** of subject and object RoIs
- 2 feature maps per Rol

Network Architecture – Embedding

- Linear embedding functions
- Two different embeddings matrices
- Embedding output vector is the concatenation of both embedding vectors
- Used as extra features in the classifier

- Problem Definition
- Dataset
- Network Architecture
- Training Procedure
- Experiments
- Conclusions

Batch Sampling and Balancing

- Batch is constructed by sampling 40 images from one of two bins (wide vs tall images)
- All images are resized:
 - Smaller size to 480 pixels
 - Larger size not larger than 960 pixels
- Images are packed in a tensor with zero padding

Batch Sampling and Balancing

- All annotated relationships from the images are positive samples
- All unannotated object pairs are used as negative samples
- Batches are balanced by sampling with following criteria
 - Maximum of 400 relationships per batch
 - At least 25% of positive relationships
 - At most 75% of positive relationships

- Problem Definition
- Dataset
- Network Architecture
- Training Procedure
- Experiments
- Conclusions

Metrics

- Metrics based on mean average precision (mAP)
- Two variants:
 - * indicates ignoring predicate class 'under'
 - The underscript $_{\rm FG}$ indicates only considering positive samples
- Total of **four metrics**: mAP, mAP*, mAP_{FG}, mAP*_{FG}

Experiments

- Our **negative mining** sampling method **vs** using **only annotated relationships**.
- Averages of three runs (standard deviation in parenthesis)

Method	mAP	mAP*	mAP _{FG}	mAP* _{FG}
GT only	34.6 (1.2)	38.8 (1.3)	91.0 (2.1)	96.7 (0.3)
Ours	78.2 (0.7)	83.3 (0.5)	88.7 (1.5)	94.4 (0.4)

Ablation Experiments

- Comparisons based on mAP*
- Baseline uses only visual information
- Spatial information improves performance slightly
- Class information is more important

Model	mAP	mAP*	mAP _{FG}	mAP* _{FG}
Baseline	78.2 (0.3)	80.8 (0.3)	88.8 (1.3)	92.1 (0.1)
+ CoordConv	78.1 (2.2)	81.6 (0.8) +2.3	90.1 (0.8)	92.7 (0.9)
+ Embedding	79.0 (1.4)	83.1 (0.8)	89.5 (2.1)	94.3 (0.3)
All	78.2 (0.7)	83.3 (0.5)	88.7 (1.5)	94.4 (0.4)

- Problem Definition
- Dataset
- Network Architecture
- Training Procedure
- Experiments
- Conclusions

Conclusions

- Use of a visual relationship classifier for event detection
- Focus on precision
- Training scheme **improves rejection of unrelated pairs**
- Small penalty to classification between predicates
- CoordConv provides small performance improvement at minor computational cost
- Extension to other datasets
 - How to measure precision in non-exhaustively annotated datasets?

This work was supported by Microsoft ATL Brazil CNPq CAPES

