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Oligopoly Dynamic Pricing Single Seller Dynamic Pricing

2 The profit-maximizationproblem for a seller with anunlimited
supply of identical goods.

2 The seller offers prices sequentially to a stream of potential cus-
tomers.

2 The marginal cost isc.

2 For thet-th costumer, the seller chooses a pricep(t) ∈ [c, pu].

2 The seller experiences either success or failure.

2 The probability of success at pricep at any given time isρ(p).
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Single Seller Dynamic Pricing

Unknown Demand Model with Finite Space Uncertainty

2 The unknown underlying demand model isρω.

2 ρ(p) is unknown but belongs to a known finite set{ρ(m)(p)}Mm=1.

2 ρ(p) is strictly decreasing and satisfies the increasing generalized
failure rate (IGFR).

2 Intuitively, IGFR means given a seller can sell at pricep, the
probability of sale at(1 + 1%)p is decreasing inp.

Profit

2 The expected profit at timet: r(ω)(p, c) = (p− c)ρ(ω)(p).

2 The profit-maximizing pricep(ω)(c) = argmaxp∈[c,pu] r
(ω)(p, c).

Lemma 1.Givenρ(p) is strictly decreasing and satisfies IGFR.
We have a uniquep(ω)(c) andr(ω)(p, c) is continuous and strictly
increasing withp over [c, p(ω)(c)].

Oligopoly Dynamic Pricing

2N sellers.

2 The marginal cost for selleri is ci.

2 Without loss of generality, we assumec1 < c2 < . . . < cN .

2 Unknown demand model{ρ(m)(p)}Mm=1.

2 Sellers propose their prices simultaneously.

2 The customer accepts the lowest pricep with probabilityρ(p).

2 If multiple sellers offer the same price: one is chosen with equal
probability.

An Infinitely Repeated Game

Public and private history

2 Sellers’ price offers are public.

2 Each seller’s own sale history is private.

Strategy of Selleri: A mappingσ from public and seller i’s private
history to a price offer at current time.
Seller i’s one-shot payoffui(pi)

2 If seller i is the single lowest price offerer:

• ui(pi) = (pi − ci)ρ(pi).
• uj(pj) = 0 ∀j 6= i.

2 If K sellers offer the same lowest price, then each hasui(p) =
1
K (p− c)ρ(p).

Seller i’s payoff for the infinitely repeated game:

U
(ω)
i (σ) = lim inf

T→∞
1

T

T∑

t=1

u
(ω)
i (at(σ)).

Equilibria and Efficiency

Equilibria

2 Nash Equilibrium (NE)

– A strategyσ.
–Ui(σ) ≥ Ui(σ

′
i, σ−i) for every selleri, every demand model

ρm and all strategiesσ′.
2 Subgame perfect equilibrium

– NE may not be sequential rational
– For all historyht, σi|ht(hτ ) = σi(h

thτ ) is a NE of the repeated
game.

Efficiency

2 Pareto Efficient Nash Equilibrium

– Inefficiency ofσ: exist aσ′ that for alli, Ui(σ) ≤ Ui(σ
′).

2 Learning efficiency: Regret

– Regret is defined as the accumulated profit loss in the unknown
demand case to the profit gained under the known demand
case.

Dynamic Pricing under Known Demand
Model

The colluding strategyσC under known demand model:

2 Let ρ(ω) be the underlying demand mode ,cN+1 = p(ω)(c1).

2 Seller 1 forms the optimal collusion ofK sellers (K =
argmaxk

1
k
r(ω)(ck+1, c1)) to maximize its own profit (from Lem-

ma 1).

2 Sellers withci < cK+1 offer the collusive pricecK+1.

2 Sellers withci ≥ cK+1 don’t participate.

2 Any deviations will trigger a punishment that seller1 offersc2−ǫ

and selleri 6= 1 offersci forever.

Theorem 1.The colluding strategyσC is a subgame-perfectand
Pareto-efficientNash equilibrium.

Demand Learning under Collusion

2 The time horizon is partitioned intofixed length epochs, length
l ∈ N

+, l ≥ 2.

2 Epoch: starts with adeclarationtime slot and thencooperation
time slots.

Epoch1 Epoch2 Epoch3

Declaration time slots Cooperation time slots

Demand Learning under Collusion

Demand Learning under Collusion

In the declaration slot of epocht:

2 A default estimatêω(1) = 1.

2 Seller1 carries out amaximum likelihood estimatêω(t) of the
underlying demand model using its private history.

2 Seller1 then offers the profit-maximizing colluding pricêp(ω̂(t)).

2 All other sellers offer the same price they offered in the coopera-
tion slots in the previous epoch.

In all the cooperation time slots of epocht

2 Selleri with ci < p̂ω̂(t) offers p̂ω̂(t).

2 Not participate ifci ≥ p̂ω̂(t).

Trigger strategy for punishing any deviations

2 Any deviations in declaration slots from seller2, . . . , N and any
deviations in cooperation time slots will trigger a everlasting pun-
ishment.

2 Punishment is that seller1 offersc2 − ǫ and selleri 6= 1 offersci
forever.

Properties of DLC

Theorem 2.

• DLC is a subgame-perfect Nash equilibrium.

• DLC is a Pareto-efficient Nash equilibrium.

• DLC achieves a bounded regret, i.e., under any demand model
ρ(ω) ∈ {ρ(ω)}Mω=1, there exists a positive constantC such that

RDLC ≤ C.

Bounded Regret

2 In general, online learning problem has sublinear regret. e.g.
log(T ),

√
T .

2 The action profiles converges to the optimal action profile played
as under the known demand model.

Simulation
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Conclusion

Oligopoly dynamic pricing

2 Infinitely repeated game with private observations.

2 Incomplete information: payoff based on the unknown demand
model.

2 The optimal collusion with a subset of sellers.

Demand Learning under Collusion (DCL):

2 Subgame perfect Nash equilibrium.

2 Pareto Efficient.

2 Efficient online learning with bounded regret.


