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ABSTRACT

Generative models are popular tools with a wide range of
applications. Nevertheless, it is as vulnerable to adversarial
samples as classifiers. The existing attack methods mainly
focus on generating adversarial examples by adding imper-
ceptible perturbations to input, which leads to wrong result.
However, we focus on another aspect of attack, i.e., cheat-
ing models by significant changes. The former induces Type
IT error and the latter causes Type I error. In this paper, we
propose Type I attack to generative models such as VAE and
GAN. One example given in VAE is that we can change an
original image significantly to a meaningless one but their re-
construction results are similar. To implement the Type I at-
tack, we destroy the original one by increasing the distance in
input space while keeping the output similar because differ-
ent inputs may correspond to similar features for the property
of deep neural network. Experimental results show that our
attack method is effective to generate Type I adversarial ex-
amples for generative models on large-scale image datasets.

Index Terms— type 1 attack, adversarial examples, gen-
erative models

1. INTRODUCTION

Generative models are considered to be one of the greatest in-
ventions in the field of AIl. Two most representative types are:
the generative adversarial networks (GAN) [1] and the varia-
tional autoencoder (VAE) [2]. They have many applications,
such as auto-programming [3], compressing information [4],
interactive image editing [5, 6], sketch2image [7, 8], and other
image-to-image translation tasks [9, 10].

It is now well-known that DNNs are vulnerable to adver-
sarial attacks. In [11], it has been found that imperceptive per-
turbations on the input of autoencoder cause the reconstruc-
tion result to change significantly. In statistical, this attack
corresponds to Type II attack on classifiers, i.e., manipulating
the input by adding imperceptible perturbations [12, 13, 14,
15] or changing the semantic attributes of images [16, 17, 18],
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Fig. 1. Type I and Type II adversarial attacks on VAE.

which has attracted many attention of researchers and be-
comes a big concern. Very recently, we find that it is also
possible to implement Type I adversarial attack [19]. Type I
attacks on generative models, i.e., changing the input signifi-
cantly but leading to similar output, is potentially as danger-
ous as attacks on classifiers and also meaningful to investi-
gate. For instance, Type I attack could do harm to the infor-
mation transition because autoencoders are widely used for
compressing information. A malicious noise image which is
far from the clean one may lead to a reconstruction output
which is similar to the origin. Type I adversarial examples
can also point out the weakness of the generative models and
are valuable for enhancing the robustness of the network.

In this paper, we design Type I attack on generative mod-
els. The difference between Type I and Type II attacks could
be understood by the following example. As illustrated in Fig
1, the top is the Type II attack where we slightly disturb “1”
such that the adversarial digit is still “1” but its reconstruction
result is another digit “0”. Type I attack is shown at the bot-
tom. Although the noisy and meaningless image is fed to the
VAE, the generative model outputs a clean example “1”.

Mathematically, the Type I attack, i.e., the input is
changed significantly but the generator still gets a similar
output, is defined as the following,

Generate 2’ = A(x)
st. G(2') =G(x) (1)
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where z is the input and 2’ represents the adversarial example.
G denotes the generative models and ¢ is the threshold.

The underlying reasons for Type I attack and Type II at-
tack are different on features as explained in [19]. The exis-



tence of Type II adversarial examples is due to the unneces-
sary feature considered by the usual generative model but not
used by an ideal one. So the variant in the unnecessary feature
ignored by the oracle makes the output of the usual genera-
tive model change greatly. Conversely, the missing feature is
taken into account in the ideal one but is omitted by the usual
one. So attacking missing feature causes Type I attack. The
essential difference between both attacks makes the defense
designed for Type II do not help the improvement of Type
I robustness. Thus, Type I attack should be simultaneously
considered together with Type II to strengthen the robustness
of generative models.

In this paper, we perform Type I attack on two most repre-
sentative generative models: VAE and StyleGAN. For VAE,
the adversarial image is generated by increasing its distance to
the clean one and keeping their outputs similar. Another way
to attack is by updating the latent variable which recovers the
adversarial image through the decoder. Benefiting from the
restriction in the latent space and the gradient related to in-
creasing the distance between the adversarial example and the
original, the attack is achieved. The datasets used to perform
Type I attack on VAE are MNIST, SVHN, and CelebA. For
StyleGAN, the attack is implemented by updating the inter-
mediate latent space which is directly related to the generated
images’ styles.

The rest of this paper is organized as follows. In Section
II, we introduce the techniques of Type I adversarial attack.
Section III evaluates the proposed attack on VAE and Style-
GAN. In Section IV, a conclusion is given to end this paper.

2. TYPE I ATTACK ON GENERATIVE MODELS

In this paper, we focus on the most representative generative
models: VAE and StyleGAN. VAEs are neural networks con-
sisting of an encoder e(-) and a decoder d(-). The encoder
outputs the parameters of the latent distribution from the in-
put, and then the decoder samples the latent distribution and
reconstructs something similar to the input. StyleGAN [20]
is a representative GAN, which has a clear hierarchy of fea-
tures, can generate ultra-high-resolution samples. StyleGAN
is composed of two sub-networks: a non-linear mapping net-
work f : Z — W which maps the latent code z to an inter-
mediate latent code w = f(z), and a synthesis network Gs(-)
which starts from a constant, and receives styles from w af-
ter affine transformations to control adaptive instance normal-
ization every time before upsampling image. Therefore, the
generator of StyleGAN can be represented as G = Gso f(z).

For Type I attack on VAE, it is required to generate an
adversarial image which is totally different from the origin.
Here, we propose the attack on the image space to generate
random noise and keep their reconstruction outputs similar.
We also could attack the latent space. That means the gradi-
ents do not merely propagate to the image space, but further to
the latent space. When attacking the image space, we push the

adversarial image away from the original one while minimiz-
ing the distance between their reconstruction outputs. Math-
ematically, the above idea can be described as the following
function,

Ly = [ld(e(@)) = zori|| = A [l = zonil|, )

where z,,; denotes the original image and x is the input vari-
able to optimize. The first part of the loss function makes sure
the similarity of the outputs while the second part destroys
the input to a meaningless one. Hyper-parameter A aims to
balance the two parts. Notice that the norm here could be
replaced by many distances. In this paper, we use [;-norm
distance when attacking SVHN and CelebA and lo-norm dis-
tance for MNIST.

Also, we can find the adversarial example by searching
in the controllable latent space and then decoding it so that
the adversarial examples are expected to follow a known dis-
tribution. In this way, we can capture more features instead
of generating random sharp noise. In the process of attack-
ing the latent space, we enlarge the distance within a specific
threshold in the latent space and keep the similarity of the
reconstruction outputs simultaneously, as follows,

L, =||d(e(d(z))) — d(e(zon))|| —

Ax ReLU (e — ||z — e(2ori)|])s @

where z is the latent variable which we need to optimize, d(z)
is the adversarial image and ¢ is a threshold which restricts z
on the mainfold of the latent space.

For StyleGAN, instead of revising the latent variable of
the mapping network, we choose to optimize in the inter-
mediate latent space because it is disentangled and directly
controls the feature of the generation output through learned
affine transformations. Therefore, we minimize the following
objective function to make the disentangled intermediate la-
tent variable change significantly but the output still similar
to the origin,

1

L= — Z |Gs(w) — Gs(wori)|| +
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where Gs(w) and Gs(wey;) are generated images of Style-
GAN which correspond to the adversarial intermediate latent
vector w and original vector we,; respectively. n; and ny are
the size of the generated image and the feature vector. Here
we choose [1-norm to optimize for the reason that restriction
in every pixel contributes to generating clearer images with
more details rather than a fuzzy one.
To show whether the style feature vector changes greatly,
we use the following criteria to measure the deviation:
1

Dev = —
n
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where n is the size of wqy;.

In Eq. (2), (3) and (4), A reflects the balance between the
variation in the input and the similarity in the output. In our
method, A is set to a constant when attacking VAE. For Style-
GAN, X varies for different iterations. At the start of the op-
timization, we set a large A to enlarge the change of the input
and allow the generated image changing to a totally different
one with different features. After that, A decreases to pull the
generated image back so that it is still as same as the origi-
nal one. Specifically, inspired by [19], a self-adaptive weight
strategy is designed for A to maintain such equilibrium:

1
Aet1 =Xk + 04(5771 Z |Gs(w) — Gs(wor) ||
1
—ReLU(e = -~ > llw = wesil))

1 ~
in{ReLU(e — — - ri _Lw70 )
+min{ReLU(e = == 3" [0 = wor) }
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where [ controls the balance between n—ll S IGs(w) —
Gs(Woyi)|| and ReLU (e — %2 > |lw — weyil|) in the itera-
tion process. At the begining, it is set as follows,

ReLU(5 — T% Z ||w - wori”)
a2 1Gs(w) = Gs(wor)||

where Ew is a loss threshold related to the feature space and
this loss term concentrates more on the similarity of the gen-
erated images. A larger 0 means larger diversity in features
while a smaller 5 makes the generated image corresponding
to the adversarial input still seem like the origin.

The adversarial samples are generated in an iterative pro-
cess by minimizing loss function L. The update could be gen-
erally described as follows.

Attack on the image space of VAE case:

(N

OL,(x
ot =gk 5( )|x:zk ®)
x
Attack on the latent space of VAE case:
0L, (z)
Zk+1 _ Zk: - R ’ZZZ,C. 9)

Attack on the intermediate latent space of StyleGan case:

0L
Wl = b — g a(w) .
w

(10)

Specifically, we set 2° = Ty, 20 = e(2qy) and w® =
Weyi- By iterative update, we gradually change the variable(zx,
z, w) until the attack is successful, i.e., the distance between
the adversarial input and origin of both generative models
reaches a specified threshold ¢ and the difference of their out-
puts can not exceed a threshold &.

Fig. 2(a) shows the Type I attack process on the Style-
GAN. With the increasing of iterations, the deviation in the

feature space is increasing. The generated image of the ad-
versarial feature vector first gets pushed away from the origi-
nal one and becomes a totally different face. Then it is pulled
back to be similar to the origin because of the training strat-
egy. Fig. 2(b) illustrates the adversarial feature changes a lot
in every dimension.
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Fig. 2. (a) Type I attack on StyleGAN. The top line shows the
deviation of the feature and the loss in the output space. Im-
ages of different attack epoch (0, 1, 2, 3, 5, 10, 27, 98 from left
to right) are displayed at the bottom. (b) Rate of the change
in each dimension of the 18-dimensional feature vector.

3. EXPERIMENTS AND RESULTS

In this section, we validate the proposed Type I attack on
VAE and GAN to show how the method can change the in-
put significantly but keep the output of the attacked generator
unchanged. The datasets we used are MNIST, SVHN, and
CelebA. The structure of VAE is modified on [11, 19]. The
GAN is the StyleGAN pretrained in FFHQ. The details about
the models, attack implementation and attack results are given
in the supplemental materials.

3.1. Type I attack on VAE

First, we use the proposed method to attack VAE on MNIST,
SVHN, and CelebA. The reconstruction errors of MNIST,
SVHN, and CelebA are 0.099, 0.036, 0.040 measured by the
root means squared deviation. The attack target is to disturb
the input significantly but the output is similar to the origin.
In Fig. 3, we show some typical adversarial examples of
Type I attack for VAE on MNIST and SVHN respectively.
More examples are provided in supplemental materials. Each
image pair (Zori, Tady) satisfies: the original input x,; and
the adversarial example x,q, are totally different but the re-
construction results of them are similar. Results are illustrated
in Table 1 quantitatively. The distance we used to measure is
the root mean squared deviation in each pixel (which is nor-
malized to [0, 1]). We can see that although the adversarial
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Fig. 3. Type I attack on MNIST and SVHN. The attack pro-
cess is shown on the top: a. the original image; b. Type I
adversarial example; c. reconstruction result of original; d.
reconstruction result of adversarial example. The left column
indicates Type I attack methods. Attack on MNIST shows on
the left and attack on SVHN is shown on the right.

Table 1. The average distance of the adversarial examples
and original ones both in the input and reconstruction output.

Attack on X Attack on Z

Dis_input Dis_output Dis_input Dis_output
MNIST 0.611 0.059 0.213 0.095
SVHN  0.270 0.021 0.247 0.042

images are different from the origin, their outputs are still
similar. Utilizing the threshold criterion defined before, all
the Type I attack are evaluated to be successful.

For CelebA, some adversarial examples are given in Fig.
4. In each pair, the left is the original image, and its Type
I adversarial example shows on the right. Note that all the
distances above images are below 0.1. Accordingly, the re-
construction results of each pair can be recognized as the
same person. The average attack performance is shown in
Table 2. Besides the root mean square error, we use the most
popular face recognizers FaceNet [21] and Insightface [22] to
see whether the two reconstruction results corresponding to
the adversarial image and original are the same person. For
FaceNet, two people can be recognized as the same one only
if their distance is below 1.2. In Insightface, when the simi-
larity of two images exceeds 0.6, they could be identified as
the same person. We can get the conclusion from Table 2 that
all the attack is successful.

3.2. Type I attack on StyleGAN

Next, we evaluate the proposed attack method on StyleGAN.
In Fig. 5, we display some examples of the Type I attack on
StyleGAN. The attack result shows a conflict. When the dis-
tance of feature vector w,q, and we,; is large, it is expected

Fig. 4. Adversarial example pairs with their reconstruction
distance measured by the root means squared deviation.

Table 2. The average difference of the adversarial examples
and original ones measured both in the input and reconstruc-
tion output when performing attack on the image space.

FaceNet
0.453

Pixel distance
0.029

Dis_input
CelebA  0.308

Insightface
0.878

Dev=162% Dev =153%

T .

Fig. 5. Type I attack on StyleGAN. The left image is the gen-
erated face corresponding to the original feature vector. The
right image is the attack result corresponding to the adversar-
ial one. The number on the top is the deviation defined before.

Table 3. The average difference between the adversarial inter-
mediate latent vector and original one and their corresponding
generated images.

FaceNet
0.332

Dev Pixel distance

StyleGAN  0.188  0.049

Insightface
0.923

the corresponding outputs are totally different persons with
different styles. However, under the attack, the deviations are
all above 150%, the generated faces are still similar. The at-
tack performance can be found in Table 3, showing that al-
though features vary a lot, the generated image is still be iden-
tified as the same one.

4. CONCLUSION

In this paper, we propose Type I attack for the generative mod-
els which aims at generating a meaningless adversarial exam-
ple whose output is similar to the origin. Specifically, we de-
sign Type I attack on VAE and StyleGAN and the experiments
show that the proposed method successfully generates Type I
adversarial examples to cheat generative models. Except for
the Type II attack, Type I attack is also important to under-
stand the generative models and worth researching because
the underlying mechanisms of them are different. Type I at-
tack for generative models can also be used to evaluate model
performance and promote progress in defense methods.
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