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Introduction
Goals of this study

Compute time-frequency representations
I candidate for real-time implementation
I allow adjustments from the user through the damping
parameter µ (Levenberg-Marquardt approach)

I allow modes separation and signal reconstruction
(synchrosqueezing)

I filter bank approach

Proposed methodology

I special case of the STFT using a causal, infinite length
window function that can be rewritten as a causal IIR
recursive filtering

I the algorithmic complexity depends on the filter order
and on the analyzed frequency bandwidth

Filter-based reassigned and
synchrosqueezed STFT

The STFT as a convolution product

The STFT of a signal x using a real-valued analysis
window h, denoted F h

x (t, ω)=Mh
x (t, ω) ejΦh

x(t,ω) can be
related to the linear convolution product between the
analyzed signal x and the complex valued impulse
response of a bandpass filter g(t, ω)=h(t) ejωt :

y g
x (t, ω) =

∫ +∞

−∞
g(τ, ω)x(t − τ ) dτ = |y g

x (t, ω)| ejΨg
x (t,ω)

= F h
x (t, ω) ejωt = Mh

x (t, ω) ej(Φh
x(t,ω)+ωt) (1)

Thus, Mh
x (t, ω)= |y g

x (t, ω)| and
Φh

x(t, ω)=Ψg
x (t, ω)− ωt.

Rewording the reassignment operators of the
spectrogram

According to [1], the spectrogram reassignment
operators can be reformulated using the phase of
y g

x (t, ω), denoted Ψg
x (t, ω) = Φh

x(t, ω) + ωt

t̂(t, ω) = −∂Φh
x

∂ω
(t, ω) = t − ∂Ψg

x
∂ω

(t, ω), (2)

ω̂(t, ω) = ω +
∂Φh

x
∂t (t, ω) =

∂Ψg
x

∂t (t, ω). (3)
The reassigned spectrogram is expressed as

RSP(t, ω) =

∫∫
R2
|y g

x (t ′, ω′)|2δ(t − t̂(t ′, ω′))

δ(ω − ω̂(t ′, ω′)) dt ′dω′ (4)
where δ(t) denotes the Dirac distribution.

Rewording the Levenberg-Marquardt
reassignment [2]

(
t̃(t, ω)
ω̃(t, ω)

)
=

(
t
ω

)
−
(
∇tRh

x (t, ω) + µI2
)−1 Rh

x (t, ω)

(5)

with Rh
x (t, ω) =

(
t − t̂(t, ω)
ω − ω̂(t, ω)

)
=

(
∂Ψg

x
∂ω (t, ω)

ω − ∂Ψg
x

∂t (t, ω)

)

∇tRh
x (t, ω) =

(
∂2Ψg

x
∂t∂ω(t, ω) ∂2Ψg

x
∂ω2 (t, ω)

−∂2Ψg
x

∂t2 (t, ω) 1− ∂2Ψg
x

∂t∂ω(t, ω)

)
Hence, the Levenberg-Marquardt reassigned
spectrogram (LMRSP(t, ω)) is obtained by replacing
(t̂, ω̂) by (t̂, ω̂) in Eq. (4).

Rewording the partial derivatives of the phase

∂Ψg
x

∂t (t, ω) = Im
(

yDg
x (t, ω)

y g
x (t, ω)

)
∂Ψg

x
∂ω

(t, ω) = Re
(

yT g
x (t, ω)

y g
x (t, ω)

)
∂2Ψg

x
∂t∂ω(t, ω) = Re

(
yDT g

x (t, ω)

y g
x (t, ω)

− yDg
x (t, ω)yT g

x (t, ω)

y g
x (t, ω)2

)
∂2Ψg

x
∂t2 (t, ω) = Im

(
yD2g

x (t, ω)

y g
x (t, ω)

−
(

yDg
x (t, ω)

y g
x (t, ω)

)2)
∂2Ψg

x
∂ω2 (t, ω) = −Im

(
yT 2g

x (t, ω)

y g
x (t, ω)

−
(

yT g
x (t, ω)

y g
x (t, ω)

)2)
where y g

x , yT g
x , yDg

x , yDT g
x , yT 2g

x and yD2g
x are the

outputs of the filters using respectively the impulse
responses g(t, ω), T g = t g(t, ω), Dg(t, ω)= ∂g

∂t (t, ω),
DT g(t, ω)= ∂

∂t (t g(t, ω)), T 2g(t, ω)= t2g(t, ω) and
D2g(t, ω)= ∂2g

∂t2(t, ω).

Rewording the synchrosqueezed STFT

As previously defined, y g
x admits the following signal

reconstruction formula

x(t−t0) =
1

h(t0)

∫ +∞

−∞
y g

x (t, ω) e−jωt0 dω
2π , when h(t0) 6= 0.

(6)
Synchrosqueezed STFT [5]

Syg
x (t, ω) =

∫
R

y g
x (t, ω′) e−jω′t0δ (ω − ω̂(t, ω′)) dω′ (7)

LMSyg
x (t, ω) is obtained by replacing ω̂ by ω̃. A sharpen

time-frequency representation is provided by |Syg
x (t, ω)|2.

The signal can be reconstructed from Syg
x (t, ω) as

x̂(t − t0) =
1

h(t0)

∫ +∞

−∞
Syg

x (t, ω)
dω
2π (8)

Towards a recursive
implementation

Recursive implementation

According to [3], y g
x can be recursively implemented

using

hk(t) =
tk−1

T k(k − 1)!
e−t/T U(t), (9)

gk(t, ω) = hk(t) ejωt =
tk−1

T k(k − 1)!
ept U(t) (10)

with p = − 1
T + jω, k ≥ 1 being the filter order, T the

time spread of the window and U(t) the Heaviside step
function.

Discretization using the impulse invariance
method [4]

Gk(z , ω) = TsZ {gk(t, ω)} =

∑k−1
i=0 biz−i

1 +
∑k

i=1 aiz−i
(11)

with bi = 1
Lk(k−1)!

Bk−1,k−i−1α
i , α = epTs, L = T/Ts,

ai = Ak,i (−α)i , Ts being the sampling period.
Bk,i =

∑i
j=0(−1)jAk+1,j(i + 1− j)k denotes the Eulerian

numbers and Ak,i the binomial coefficients.
Hence, using yk[n,m] ≈ y gk

x (nTs,
2πm
MTs

) with n ∈ Z and
m = 0, 1, ...,M − 1, we obtain

yk[n,m] =
k−1∑
i=0

bi x [n − i ]−
k∑

i=1
ai yk[n − i ,m] (12)

Algorithm implementation for recursive TFR
computation

At time index n :
1. Compute the required y g

k [n,m] using x [n − i ] and
yk[n − j ,m] with i ∈ [0, k − 1], j ∈ [1, k]

2. Compute the other required specific filtered signals
(i.e. yT g

k , yDg
k , yDT g

k , yT
2g

k or yD
2g

k ) using y g
k with

different filter orders
3. Compute n̂,m̂ (resp. ñ, m̃) provided by the
reassignment operators

4. If n̂ ≤ n (resp. ñ ≤ n) then update TFR[n̂,m]
otherwise store the triplet

(
y g

k [n,m], n̂,m
)
into a

list
5. Update TFR[n,m] using all previously stored
triplets verifying n̂ ≤ n and remove them from the
list

Numerical results
Resulting time-frequency representations
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Recursive spectrogram k=5, L=7.00, SNR=45 dB
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Recurs. reass. spectrogram k=5, L=7, SNR=45 dB

0 50 100 150 200 250 300 350 400 450

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time samples

n
o
rm

a
liz

e
d
 f
re

q
u
e
n
c
y

Recurs. |Sy
k
|
2
 k=5, L=7, SNR=45 dB

0 50 100 150 200 250 300 350 400 450

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 50 100 150 200 250 300 350 400 450 500
−4

−2

0

2

4

6

8

10

12

14

16

time samples

a
m

p
lit

u
d
e

reconstructed signal, RQF=40.02dB

 

 

reference signal

reconstructed signal

Signal reconstruction quality

Using the discrete-time version of Eq. (8) with n0 = t0/Ts.

(a) n0 8 18 26 28 30
RQF (dB) 9.79 24.17 26.77 26.82 26.73

(b) M 100 200 600 1000 2400
RQF (dB) 20.56 24.90 29.48 30.50 30.87

(c) µ 0.30 0.80 1.30 1.80 2.30
RQF (dB) 20.83 27.28 29.68 30.35 30.90

Signal Reconstruction Quality Factor RQF=10 log10
( ∑

n |x [n]|2∑
n |x [n]−x̂ [n]|2

)
,

of the recursive synchrosqueezed STFT computed for k = 5, L = 7
at SNR = 45 dB. Line (a), computed for M = 300, Line (b) and Line
(c), computed for n0=28 and M=300.
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