ANALOG MAPPINGS FOR CORRELATED SOURCES OVER AWGN CHANNELS Pedro Suárez-Casal¹, Óscar Fresnedo¹, Luis Castedo¹, Javier García-Frías²

¹ Department of Electronic and Systems, University of A Coruña, SPAIN, ²Department of Electrical & Computer Engineering, University of Delaware, USA

System model

Source symbols $\mathbf{s} = [s_1, s_2]^T$ follow a bivariate Gaussian distribution with zero mean and covariance matrix

$$\mathbf{C_s} = E\left[\mathbf{ss}^H\right] = \begin{bmatrix} \sigma_s^2 & \rho \sigma_s^2 \\ \rho \sigma_s^2 & \sigma_s^2 \end{bmatrix}$$

Source symbols are compressed with a 2:1 analog JSCC mapping $g(\cdot)$ and sent over an AWGN channel

$$y = g(\mathbf{s}) + n = x + n. \tag{1}$$

General non-parametric mappings

If distortion criterion is MSE, then the optimal decoder is given by:

$$h(y) = \mathbb{E}[s|y] = \frac{\int \mathbf{s} \ p_s(\mathbf{s}) \ p_n(y - g(\mathbf{s})) \ \mathrm{d}\mathbf{s}}{\int p_s(\mathbf{s}) \ p_n(y - g(\mathbf{s})) \ \mathrm{d}\mathbf{s}}$$
(2)

A steepest descent algorithm is used to find the optimal mapping function, subject to a power constraint, with the gradient vector

$$\nabla J[g] = \lambda p_s(\mathbf{s})g(\mathbf{s}) - \int h'(g(\mathbf{s}) + n)[\mathbf{s} - h(g(\mathbf{s}) + n)]p_n(n)p_s(\mathbf{s})dn.$$

Fig. 2: Non-parametric and parametric mappings for 2:1 compression of the sources symbols.

The encoder maps the symbols to the closest point on the curve

This encoder can be enhanced by considering the noise variance:

The decoding operation is implemented by using a two-stage receiver

This approach achieves similar performance to that of the general MMSE decoder with lower computational complexity.

Proposed parametric mapping

After examining the resulting non parametric mappings, we propose to use the following parametric curve

$$\mathbf{K}(t) = \mathbf{U}\mathbf{\Sigma} \begin{bmatrix} t - \frac{1}{2\alpha}\sin(\alpha t) \\ \Delta\sin(\alpha t) \end{bmatrix}$$
(3)

• K(t) represents the point into the bidimensional space corresponding to the parameter t on the curve.

• The parameters α and Δ represent the frequency and the amplitude of the mapping.

• U and Σ are obtained from the eigendecomposition of the source covariance matrix $\mathbf{C}_s = \mathbf{U}^H \mathbf{\Sigma} \mathbf{U}$.

$$x = g_1(\mathbf{s}) = \arg\min_t \|\mathbf{s} - \mathbf{K}(t)\|^2.$$
 (4)

$$x = g_2(\mathbf{s}) = \arg\min_t \int_{-\infty}^{\infty} \|\mathbf{s} - \mathbf{K}(u)\|^2 p_n(u-t) \mathrm{d}u$$
 (5)

- 2:1 compression of the source with the encoding algorithm given by Equation (5).
- Source symbols are estimated by using the two-stage receiver.
- Comparison with non-parametric mappings, alternating SQLC, spiral-like mappings and the Optimum Performance Theoretically Attainable (OPTA).

to-Distortion Rate (SDR) given by

where MSE = 1/2

The OPTA bound arises from equating the channel capacity and the rate-distortion function of a correlated bivariate Gaussian

This work has been funded by Office of Naval Research Global of United States and MINECO of Spain under grants N62909-15-1-2014 and TEC2013-47141-C4-1-R.

Results

Performance evaluation of the parametric mappings:

- The performance of analog JSCC is measured in terms of the Signal-
 - $SDR(dB) = 10 \log_{10}(\sigma_s^2/MSE),$

$$\sum_{i=1}^{2} E[\|\hat{s}_i - s_i\|^2].$$

Fig. 4: SDR vs SNR for correlation factors $\rho = 0.90$ and $\rho = 0.75$