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* This work focuses on the reconstruction of a tensor captured using Compressive Sensing (CS).

« Compared to CS, Tensor CS (TCS) does not involve any vectorization, hence has the benefits of easing hardware
Implementation, reducing the amount of storage and preserving multidimensional structures of signals.

* We propose to exploit diverse structures along each dimension (i.e., mode) of a tensor during the reconstruction.

* The proposed multi-structure optimization problem is solved by ADMM, in which nonconvex reconstruction is employed.

* We derive to reduce the memory requirements and computation loads encountered for the recovery of large scale tensors.

 The proposed approach improves the reconstruction accuracy by providing the flexibility of involving various structures.

3. Nonconvex Recovery for Tensors with Low

1. Problem Formulation

rank and Sparse Modes

Extending the sensing model in CS, a tensor X € RNt X-XNn jg gam-

pled by:* We adopt the proximal /,, (p < 1) norm (denoted by G, ) as defined in
Y = X x; B xo Po... %, P, (1) [1], of which the proximity has been derived as a p-shrinkage operator that

functions element-wise as: shrink,(t, u) = max{0, |t| — mt\p_l}%.

Algorithm 1 TADMM

Input: Y, ®,, 2., X", &0, 90, &0, LS, p.p o, (i=1,..n).

where Y € RMi%--Mn jg the measurement, ®; € RM >N (j = 1,....n)
are sensing matrices and M; < N;. A tensor is regarded as /A sparse when
it can be represented as:

Output: X.
_— § X1 W1 Xo Wo... X, ‘Iln, (2) 1 :Repeat Il ZSG’ Gop(2iX(3)) +z{;a i{Goplo (X))}
. 1 1€
where ¥, € RY:*Ni (j = 1,...,n) are the sparsifying basis, e.g., a Dis- g: FO_‘;,? :é ton do st Y = X xq ®y. %, B,
crete Wavelet Transform (DWT), S € RV1*--Nn g the sparse representa- A ! f AWT = sod(LP' + X'.);
tion which has only K non-zero coefficients. Then the sensing procedure is e
. _ 5: Z;""" = foldi{T'shrink,|[diag(A), “£]W " };
equivalent to: 5 else P
— § X1 Al X2 AQ Xn Ana (3) 7 &Hrl — Shrinkp(%&t —Q—th %),
& U. (i — : - - 8: end
where A, = &, ¥, (i = 1, ..., n) are the equivalent sensing matrices. o end for
10:  Calculate X' using (7); The update equation (7) involves
11: Update P,"*' (i = 1,...,n) using (8); | derivation of efficient calculations.
2. TCS Recovery Using Structures in Modes 12:  Update Q""" using (9). See the article for details.

13: Until a stopping criteria is met at iteration .

e The reconstruction problem that provides the flexibility of exploiting
various structures is formulated as:

ﬂ%ﬂ Z (¥; ‘ ‘QzX(z) ‘ ‘(i—th, norm)
- =1

4. Simulation Results

—O—TADMM —¥— SB- p+SB —7—KCS —A—BKOMP —B—LRTC

S.t.Xzle ‘1’1 Xn (I)n. (4)
This problem can be rewritten as:

man ZQLHQ Zfz,( )H(t th norm)

(a) MRI; (b) HSI
p=0.5.
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where E (Z — 1, cees ?"L) are intermediate variables. TADMM (34.1dB) SB -p (32.3dB) SB (30.0dB) KCS (29.6dB)
| _ o _ (a) MRI (128x128x128); [ ==
e We derive efficient calculations in the ADMM steps to enable imple- sampling ratio: 0.3; ——>
mentation. Updating each Z; for i = 1, ..., n yields: p=0.5.
7, =t Q, 1P N & 6)
— - ‘ prox 0 (a th nor ?n)[ ( p_ —I_ )} ( (b) HSI (1024)(1024)(32) TADMM (52.2dB) SB- p (49 OdB) SB (47 0dB) KCS (45 4dB)
where prox(-) denotes the proximity operator and is defined for func- sampling ratio: 0.1, ——> ‘
tion f as: proxs ,(x) = arg min, f(y) + 5|z — y||5. p=0.5.
L, h

e With Z; (i = 1,...,n) determined, we then update X by N ; -
— ccuracy and running time

X = ten(v) o (G x1 UT ... x,, UN] %1 Uj... x,, U,, (7)|  comparison for HSI; » _ Algorithm PSNR (dB)  Time (h)
Y 1 o  1p sampling ratio: 0.2. TADMM (p = 0.2) 56.22 1.73
where v = diag[(n1+V, ©@..@ V)" [.G=)_,(Z;—P;) + TADMM (p = 0.7)  55.64 1.69
(%Q +Y) x; @1 x, &1 _ TADMM (p = 1) 53.95 1.39
— To take adyantage of the various SB (p = 0.2) 5351 [ 74
e In the final steps, the dual variables are updated by: structures In tensor modes, one can SB (p = 0.7) 53.84 170
i . £l £l define various dictionaries and norms SB (p = 1) 5573 | 35
P, " =P, —pZ;/7 - X"7"), (8) for different modes, provided that the KCS 5113 )5
fi1 ¢ t1 roximity for the norms can be N |
QM =Q - p(X' x; ®y... x, B, —Y). (9) Ealculatei/i BKOMP 37.13 0.77
' LRTC 36.82 0.54

* |Given a matrix A € R7*#%_ the mode-k tensor by matrix product is defined as Z = X x;, A. where Z € RN X N1 XX Nk X Nngnd it is
calculated by: Z = fold;(AX(;)), where fold;(-) is an operator that folds up a matrix along mode i to a tensor.
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