NONCONVEX COMPRESSIVE SENSING RECONSTRUCTION FOR TENSOR USING STRUCTURES IN MODES

Xin Ding^{*}, Wei Chen^{+*}, Ian Wassell^{*}

* Computer Laboratory, University of Cambridge, UK

+ State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, China

- This work focuses on the reconstruction of a tensor captured using Compressive Sensing (CS).
- Compared to CS, Tensor CS (TCS) does not involve any vectorization, hence has the benefits of easing hardware
 implementation, reducing the amount of storage and preserving multidimensional structures of signals.
- We propose to exploit diverse structures along each dimension (i.e., mode) of a tensor during the reconstruction.
- The proposed multi-structure optimization problem is solved by ADMM, in which nonconvex reconstruction is employed.
- We derive to reduce the memory requirements and computation loads encountered for the recovery of large scale tensors.
- The proposed approach improves the reconstruction accuracy by providing the flexibility of involving various structures.

(4)

1. Problem Formulation

Extending the sensing model in CS, a tensor $\underline{\mathbf{X}} \in \mathbb{R}^{N_1 \times \ldots \times N_n}$ is sampled by:^{*}

$$\underline{\mathbf{Y}} = \underline{\mathbf{X}} \times_1 \boldsymbol{\Phi}_1 \times_2 \boldsymbol{\Phi}_2 \dots \times_n \boldsymbol{\Phi}_n, \tag{1}$$

where $\underline{\mathbf{Y}} \in \mathbb{R}^{M_1 \times ... M_n}$ is the measurement, $\Phi_i \in \mathbb{R}^{M_i \times N_i}$ (i = 1, ..., n) are sensing matrices and $M_i < N_i$. A tensor is regarded as K sparse when it can be represented as:

$$\mathbf{X} = \mathbf{S} \times_1 \boldsymbol{\Psi}_1 \times_2 \boldsymbol{\Psi}_2 \dots \times_n \boldsymbol{\Psi}_n, \tag{2}$$

3. Nonconvex Recovery for Tensors with Low rank and Sparse Modes

We adopt the proximal l_p $(p \le 1)$ norm (denoted by $G_{\rho,p}$) as defined in [1], of which the proximity has been derived as a *p*-shrinkage operator that functions element-wise as: $shrink_p(t, \mu) = max\{0, |t| - \mu |t|^{p-1}\}\frac{t}{|t|}$.

Algorithm 1 TADMM

Input: $\underline{\mathbf{Y}}, \boldsymbol{\Phi}_{i}, \boldsymbol{\Omega}_{i}, \underline{\mathbf{X}}^{0}, \underline{\mathbf{P}}_{i}^{0}, \underline{\mathbf{Q}}^{0}, \underline{\mathbf{Z}}_{i}^{0}, \mathcal{L}, \mathcal{S}, p, \rho, \alpha_{i}, (i = 1, ...n).$ Output: $\underline{\mathbf{X}}$. 1:Repeat $\frac{\min_{\mathbf{X}} \sum \alpha_{i}[G_{\rho,p}(\boldsymbol{\Omega}_{i}\mathbf{X}_{(i)})] + \sum \alpha_{i}\{G_{\rho,p}[\sigma(\mathbf{X}_{(i)})]\}}{\sum \alpha_{i}[G_{\rho,p}[\sigma(\mathbf{X}_{(i)})]\}}$

where $\Psi_i \in \mathbb{R}^{N_i \times N_i}$ (i = 1, ..., n) are the sparsifying basis, e.g., a Discrete Wavelet Transform (DWT), $\underline{\mathbf{S}} \in \mathbb{R}^{N_1 \times ... N_n}$ is the sparse representation which has only K non-zero coefficients. Then the sensing procedure is equivalent to:

$$\underline{\mathbf{Y}} = \underline{\mathbf{S}} \times_1 \mathbf{A}_1 \times_2 \mathbf{A}_2 \dots \times_n \mathbf{A}_n, \qquad (3)$$

where $\mathbf{A}_i = \mathbf{\Phi}_i \mathbf{\Psi}_i$ (i = 1, ..., n) are the equivalent sensing matrices.

2. TCS Recovery Using Structures in Modes

• The reconstruction problem that provides the flexibility of exploiting various structures is formulated as:

$$\min_{\mathbf{X}} \sum_{i=1}^{n} \alpha_{i} || \mathbf{\Omega}_{i} \mathbf{X}_{(i)} ||_{(i-th \ norm)}$$
$$s.t. \mathbf{Y} = \mathbf{X} \times_{1} \mathbf{\Phi}_{1} ... \times_{n} \mathbf{\Phi}_{n}.$$

This problem can be rewritten as:

$$\underline{\mathbf{x}}, \underline{\mathbf{z}}_{1}, \dots, \underline{\mathbf{z}}_{n} \sum_{i=1}^{n} \alpha_{i} || \mathbf{\Omega}_{i} \mathbf{Z}_{i(i)} ||_{(i-th \ norm)}$$

$$s.t. \ \underline{\mathbf{Y}} = \underline{\mathbf{X}} \times_{1} \mathbf{\Phi}_{1} \dots \times_{n} \mathbf{\Phi}_{n},$$

$$\underline{\mathbf{X}} = \underline{\mathbf{Z}}_{i}, \ i = 1, \dots, n,$$
(5)

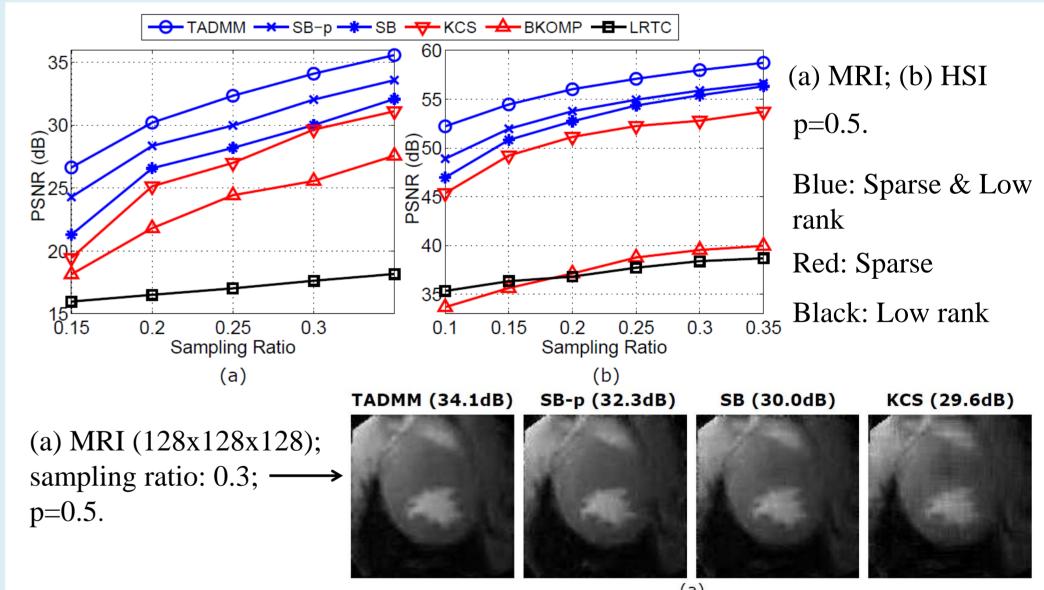
where $\underline{\mathbf{Z}}_i$ (i = 1, ..., n) are intermediate variables.

• We derive efficient calculations in the ADMM steps to enable implementation. Updating each \mathbf{Z}_i for i = 1, ..., n yields:

$$\underline{\mathbf{Z}_{i}}^{t+1} = \mathbf{\Omega}_{i}^{T} prox_{\frac{\alpha_{i}}{\rho}, (i-th \ norm)} [\mathbf{\Omega}_{i} (\frac{1}{\rho} \underline{\mathbf{P}_{i}}^{t} + \underline{\mathbf{X}}^{t})], \qquad (6)$$

2: For
$$i = 1$$
 to n do
3: if $i \in \mathcal{L}$
4: $\Gamma \Lambda W^T = svd(\frac{1}{\rho} \mathbf{P}_{i(i)}^t + \mathbf{X}_{(i)}^t);$
5: $\underline{\mathbf{Z}_i}^{t+1} = fold_i \{\Gamma shrink_p[diag(\Lambda), \frac{\alpha_i}{\rho}] W^T\};$
6: else
7: $\underline{\mathbf{Z}_i}^{t+1} = shrink_p(\frac{1}{\rho} \underline{\mathbf{P}_i}^t + \underline{\mathbf{X}}^t, \frac{\alpha_i}{\rho});$
8: end
9: end for
10: Calculate $\underline{\mathbf{X}}^{t+1}$ using (7);
11: Update $\underline{\mathbf{P}_i}^{t+1}$ ($i = 1, ..., n$) using (8);
12: Update $\underline{\mathbf{Q}}^{t+1}$ using (9).
13: Until a stopping criteria is met at iteration t .

4. Simulation Results



where $prox(\cdot)$ denotes the proximity operator and is defined for function f as: $prox_{\frac{1}{\rho}, f}(x) = arg \min_{y} f(y) + \frac{\rho}{2} ||x - y||_{2}^{2}$.

• With
$$\underline{\mathbf{Z}}_{i}$$
 $(i = 1, ..., n)$ determined, we then update $\underline{\mathbf{X}}$ by
 $\underline{\mathbf{X}}^{t+1} = [ten(\mathbf{v}) \circ (\underline{\mathbf{G}} \times_{1} \mathbf{U}_{1}^{T} ... \times_{n} \mathbf{U}_{n}^{T})] \times_{1} \mathbf{U}_{1} ... \times_{n} \mathbf{U}_{n},$ (7)
where $\mathbf{v} = diag[(n\mathbf{I} + \mathbf{V}_{n} \otimes ... \otimes \mathbf{V}_{1})^{-1}], \underline{\mathbf{G}} = \sum_{i=1}^{n} (\underline{\mathbf{Z}}_{i} - \frac{1}{\rho} \underline{\mathbf{P}}_{i}) + (\frac{1}{\rho} \underline{\mathbf{Q}} + \underline{\mathbf{Y}}) \times_{1} \mathbf{\Phi}_{1}^{T} ... \times_{n} \mathbf{\Phi}_{n}^{T}.$

• In the final steps, the dual variables are updated by:

$$\underline{\mathbf{P}_{i}}^{t+1} = \underline{\mathbf{P}_{i}}^{t} - \rho(\underline{\mathbf{Z}_{i}}^{t+1} - \underline{\mathbf{X}}^{t+1}), \qquad (8)$$
$$\underline{\mathbf{Q}}^{t+1} = \underline{\mathbf{Q}}^{t} - \rho(\underline{\mathbf{X}}^{t+1} \times_{1} \mathbf{\Phi}_{1} \dots \times_{n} \mathbf{\Phi}_{n} - \underline{\mathbf{Y}}). \qquad (9)$$

(b) HSI (1024x1024x32); sampling ratio: 0.1; → p=0.5.

Accuracy and running time comparison for HSI; – sampling ratio: 0.2.

To take advantage of the various structures in tensor modes, one can define various dictionaries and norms for different modes, provided that the proximity for the norms can be calculated.

	(a)		
TADMM (52.2dB		SB (47.0dB)	KCS (45.4dB)
e	(b)		Time (h)
	Algorithm	PSNR (dB)	Time (h)
	TADMM ($p = 0.2$)) 56.22	1.73
various , one can s and norms ded that the an be	TADMM ($p = 0.7$)) 55.64	1.69
	TADMM $(p = 1)$	53.95	1.39
	SB $(p = 0.2)$	53.51	1.74
	SB $(p = 0.7)$	53.84	1.70
	SB(p=1)	52.73	1.35
	KCS	51.13	25.1
	BKOMP	37.13	0.77
	LRTC	36.82	0.54

* Given a matrix $\mathbf{A} \in \mathbb{R}^{J \times N_k}$, the mode-k tensor by matrix product is defined as $\underline{\mathbf{Z}} = \underline{\mathbf{X}} \times_k \mathbf{A}$, where $\underline{\mathbf{Z}} \in \mathbb{R}^{N_1 \times \ldots \times N_{k-1} \times J \times N_{k+1} \times \ldots \times N_n}$ and it is calculated by: $\underline{\mathbf{Z}} = fold_i(\mathbf{A}\mathbf{X}_{(i)})$, where $fold_i(\cdot)$ is an operator that folds up a matrix along mode *i* to a tensor.

[1] R.Chartrand, "Nonconvex splitting for regularized low rank + sparse decomposition", IEEE Trans. Signal Process., vol. 60, no. 11, pp. 5810-5819, 2012.

