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ABSTRACT

This paper presents a study of the video compression effect
on source camera identification based on the Photo-Response
Non-Uniformity (PRNU). Specifically, the reliability of dif-
ferent types of frames in a compressed video is first inves-
tigated, which shows quantitatively that I-frames are more
reliable than P-frames for PRNU estimation. Motivated by
this observation, a new mechanism for estimating the refer-
ence PRNU and two mechanisms for estimating the test-video
PRNU are proposed to achieve higher accuracy with fewer
frames used. Experiments are performed to validate the ef-
fectiveness of the proposed mechanisms.

Index Terms— Digital video forensics, source camera
identification, photo-response non-uniformity, low-bit-rate
video compression.

1. INTRODUCTION

Pocket-sized digital cameras and cell-phones with cameras
have become popular and generated a large amount of digital
images and videos. Compared to images, videos can capture
more visual information, and therefore is an ideal format for
recording rich and dynamic content.

Accompanying the growing importance of digital videos,
concerns regarding their origin and authenticity have been
raised and are receiving increasing attention. A systematic
study of digital video forensics that answers different ques-
tions about a video’s acquisition and processing history is
important in order to establish the trustworthiness of digital
videos. Several previous works on video forensics considered
the identification of source devices and tampering operations.
In [1], Chen et al. extended the source camera identifica-
tion technique based on the Photo-Response Non-Uniformity
(PRNU) [2] from image to video. McCloskey [3] proposed to
take into account the influence of video content on the achiev-
able performance of [1]. On tampering detection, Wang and
Farid [4] demonstrated that frame insertion or deletion that
are usually involved in video forgery form forensic traces and
therefore can be detected. Luo et al. [5] showed that MPEG
compression introduces different block artifacts into different
types of frames, which can be used to detect video recompres-
sion.

In this paper, we examine the source camera identifica-
tion problem, with a focus on cell-phone cameras. We fo-
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cus on cell-phone cameras because more cell-phones are now
equipped with the video recording capability, and we fore-
see that more videos will be generated by cell-phones in the
future owing to their superior convenience. Previous works
such as [6, 7] have developed and enhanced the methodology
of source camera identification by means of the PRNU [2]
which we will review shortly. These works considered the
case when still images from the camera under investigation
are used for PRNU estimation and matching. This methodol-
ogy is extended in [1] to use videos, and the reported accuracy
is promising when the test video is long enough. However,
as also noticed in [3], the task of source camera identifica-
tion using videos is more challenging than the image coun-
terpart due to the degraded visual quality of videos. This
problem is even more serious when we consider videos gen-
erated by cell-phone cameras that suffer from much stronger
compression. Nevertheless, the rich temporal information in
videos can help, if properly exploited, to achieve more accu-
rate source camera identification.

As a video is composed of multiple frames, how each
frame should be used to jointly estimate the PRNU deserves
careful exploration. In this paper, we study the effect of
video compression, and show that the reliability of frames
for PRNU estimation can be considerably different, attributed
to different levels of compression. We propose new mecha-
nisms for PRNU estimation that leverage such a difference,
and show that more accurate source camera identification can
be achieved with fewer frames used.

2. PRNU FOR SOURCE CAMERA IDENTIFICATION

We review the basic principles of source camera identification
based on PRNU. For a more detailed discussion, please refer
to [2]. The manufacturing imperfections of charge-coupled
device (CCD) and complementary metal-oxide semiconduc-
tor (CMOS) sensors result in slight variations of the sensi-
tivity of sensors to the incident light. The pattern of sensi-
tivity variation, commonly referred to as the Photo Response
Non-Uniformity (PRNU) [2], can be seen as the “fingerprint”
unique to individual imaging devices. It has been shown in [2]
that, by applying a denoising filter on the image F, the differ-
ence between F and its denoised version can be approximated
byV = FK+M,whereV is referred to as the noise residual,
K is the PRNU pattern matrix that captures the variation pat-
tern of sensor sensitivity, and M is the modeling noise that
accommodates various noise sources, including shot noise,
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dark current, read-out noise, quantization and compression
noise, and the imperfection of the denoising filter. Please be
informed that all multiplication operations throughout this pa-
per are element-wise.

For source camera identification using output images, it
is usually assumed that N images taken by the camera under
investigation are available for PRNU estimation. When the
modeling noise M is assumed as white Gaussian with per-
pixel variance identical across all the images, a maximum-
likelihood estimate of K can be derived as:

K̂ =
∑N

i=1 ViFi∑N
i=1(Fi)2

, (1)

where Vi and Fi are the ith noise residual and ith image,
respectively [2].

The typical setting of source camera identification as-
sumes the camera under investigation is available. To match
test images against this camera, a training procedure is
performed first to obtain a reference PRNU. Ideal training
images are those with smooth content and high yet unsat-
urated luminance. Then a PRNU estimate from the test
image is calculated using Eq. (1) and compared against
the reference PRNU. A popular sub-optimal similar metric
between two PRNU matrices S1 and S2 is the Normal-
ized Cross-Correlation (NCC) given by NCC(S1,S2) =
(S1−S̄1)⊗(S2−S̄2)
‖S1−S̄1‖‖S2−S̄2‖

, where ⊗ denotes the dot product, and S̄1

and S̄2 are the average value of S1 and S2, respectively.
A correlation matrix C can be obtained where C(i, j) is
the NCC value between S1 and S2 when S2 is shifted
by (i, j). Another PRNU similarity metric that compen-
sates for the camera-specific NCC range is called the Peak
to Correlation Energy (PCE), defined as PCE(S1,S2) =

(n−|Npeak|)C2
max∑

(i,j)/∈Npeak
C(i,j)2 , where Cmax = maxi,j C(i, j), Npeak is

a small neighborhood surrounding the shift corresponding to
Cmax, and n is the size of S2. PCE characterizes if the maxi-
mum correlation is much higher than the average correlation,
or in other words, if there is a peak in the correlation matrix.
We adopt the PCE metric in this paper.

PRNU-based source device identification using output
videos has been studied in previous works [1] and [3]. Par-
ticularly, in [1], PRNU is utilized to determine if two video
clips come from the same source camcorder. The main idea
is to treat each frame as one image in a video consisting of
N frames, and then apply Eq. (1) to obtain an estimate based
on the multiple frames, i.e., the entire video. It is advised
in [1] that each frame be treated equally mainly to reduce
the complexity of implementation. The authors reported that
source camcorder can be identified as long as the video is
sufficiently long. In [3], the method described above is exam-
ined with special attention to the influence of video content.
It was observed that edges can be mistaken as noise by the de-
noising filter, which is further amplified if frames in the video
are highly correlated. It is proposed in [3] to assign higher
weights to pixels in smooth areas to alleviate this problem,
which actually shares a similar spirit with other image-based
PRNU estimation techniques such as [7].

Table 1. Cell-Phone Cameras Used in Our Experiment
Index Model Format Resolution
1 RIM Blackberry 9530 3GP 480× 352
2 Sony Ericsson W705a MP4 320× 240
3 Motorola Cliq 3GP 352× 288
4,5 Apple iPhone 4 (×2) MOV 568× 320

3. COMPRESSION EFFECT ON PRNU ESTIMATION

Most of cell-phone cameras today support low-bit-rate video
coding standards MPEG-4 AVC/H. 264. The typical reso-
lution ranges from 320 × 240 to 480 × 352 pixels, and the
bit rate may vary between 300 to 1000 kbps. Such strongly-
compressed videos are generated in order to meet a more
stringent storage-space constraint and to reduce the transmis-
sion effort. Strong compression may lower the accuracy of
PRNU estimation, as it creates blocking artifacts and coarsely
quantized intensity levels, and eliminates a significant amount
of content detail that carry the PRNU-induced noise.

We take an empirical approach to understand the im-
pact of compression on PRNU estimation, in particular, if
different frames have different reliability for PRNU esti-
mation. As it is a non-trivial task to calculate the frame
quality without the uncompressed video for reference, we
judge the frame reliability in terms of their correlation with
the reference PRNUs. We collect 5 recently-released cell-
phones with video recording capability as listed in Table 1.
Twenty videos that contain indoor and outdoor scenes of 30
seconds are taken with each camera. Interestingly, we find
that all frames are either I- or P-frames, and no B-frame is
found. We obtain the reference PRNUs of all these cameras
according to the procedure recommended in Sec. 4. The
sequence of frame type of each video can be represented
as {I, P1, P2, P3, P4, . . . , I, P1, P2, P3, P4, . . . , I, . . .}. The
PRNU of each test video can be estimated with the subset
of frames corresponding to the same symbol (i.e., the same
offset from I-frames).

For each camera, the PCE value averaging over 20 videos
with matched against reference PRNU is shown in Fig. 1. The
PCE value is much higher (about twice) when the PRNU is es-
timated using I-frames, but the difference in PCE between dif-
ferent subsets of P-frames is not obvious. That is, the PRNU
extracted from I-frames are more correlated to the reference
PRNU than those from P-frames, which implies that I-frames
are more reliable than P-frames for PRNU estimation. In the
meantime, the average PCE values associated with P1, P2,
P3, and P4 have similar values of 31.8, 30.6, 32.7, 32.0, re-
spectively, indicating that P-frames with different offsets have
similar reliability for PRNU estimation.

4. REFERENCE PRNU ESTIMATION

In order to perform robust matching between the reference
PRNU and the PRNU from test videos, it is crucial to obtain
reliable reference PRNUs in the training process. As com-
pression poses a critical impact on PRNU estimation as shown
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Fig. 1. Average PCE for different offsets from I-frames.

in Sec. 3, it is reasonable to favor I-frames if enough I-frames
are available. Besides, since the compression under our con-
sideration is strong, various noise sources may be dominated
by compression noise that is highly content-dependent. One
should avoid the use of videos with (nearly) static content oth-
erwise the overall modeling noise associated with different
frames in a video will be unfavorably correlated and cannot
be easily removed through frame averaging.

These observations motivate us to use multiple short
videos, instead of one long video, to obtain the reference
PRNU. Specifically, a total of N short videos (shorter than 1
second) that contain smooth and bright scenes are first col-
lected, and then the first frame of each video will be used
to jointly estimate the reference PRNU. Since practically the
first frame in each video is an I-frame, there are as many
I-frames as the number of training videos available for ref-
erence PRNU estimation. Moreover, because these I-frames
are from different videos, it is expectable that they will have
lower correlation with one another.

We compare this mechanism of reference PRNU estima-
tion with two alternatives: 1) using the first P-frames (i.e., the
second frame in a video) from multiple videos and 2) using a
long video with static content. We refer to these three mecha-
nisms as MI , MP , and ML, respectively. For MI and MP ,
50 short videos are used to estimate the reference PRNU. For
ML, a long video with 500 static frames is used to estimate
the reference PRNU. In Fig. 2, we show for the three mech-
anisms the PCE values averaging over 20 test videos with re-
spect to different frame numbers from the test video. One can
see that MI is consistently superior to MP , which increases
as more frames from the test video are used. On the other
hand, estimating the reference PRNU using a long but static
video is much less effective. If the reference PRNU is ob-
tained in such a way, then even if much more frames in the
test video are used, then correlation between the test-video
PRNU and the reference PRNU is still much smaller.

5. EFFICIENT PRNU MATCHING BY FRAME
REORDERING AND WEIGHTING

We have shown that I-frames extracted from videos are more
reliable than P-frames for PRNU estimation. Nevertheless,
the average PCE value when all frames are used is 300.9,

0 100 200 300 400
0

100

200

300

400

500

600

frame number

av
er

ag
e 

P
C

E

 

 

trained with 1st I−frames from 50 videos
trained with 1st P−frames from 50 videos
trained with 500 frames from 1 static video

Fig. 2. Comparison of different mechanisms for reference
PRNU estimation, in terms of the achievable PCE value for
different test-video frame numbers. Blackberry 9530 is used.

much higher than the average PCE value of 72.3 if only I-
frames are used. It is therefore reasonable to use all the frames
in a video to obtain a PRNU estimate, and this is in line with
the conclusion made in [1]. Two issues, however, need to be
addressed more carefully. First, using all the frames in a video
can be prohibitively time-consuming, since all frames have to
go through a denoising process with non-negligible complex-
ity to extract the frame-wise PRNU. Besides, since I-frames
and P-frames have distinct reliability, they should be treated
differently when combined for PRNU estimation.

To address the first issue, if the number of frames that
can be processed in PRNU estimation is limited, a reason-
able choice is to first use more reliable frames, i.e., I-frames.
This is feasible in terms of video decoding complexity since
I-frames are at the beginning of the Group of Picture (GOP)
and can be easily located. In this paper, we assume that infor-
mation required to decode the subsequent P-frames are stored
after an I-frame is completely decoded, so that the decod-
ing of P-frames can be performed without re-decoding the
I-frames. For the second issue, by allowing the ith frame has
its modeling noise variance of σ2

i , we can generalize Eq. (1)
as (

∑N
i=1

1
σ2
i
ViFi)/(

∑N
i=1

1
σ2
i
(Fi)2), which indicates that a

frame should be assigned a weight inversely proportional to
its modeling noise variance. We assume that all I-frames have
the same modeling noise variance of σ2

I , and all P-frames
have the same modeling noise variance of σ2

P . Since videos
generated by cell-phones are strongly compressed, σ2

I and σ2
P

are mainly determined by the level of compression noise, and
therefore should be directly related to the signal-to-noise ra-
tio (SNR) of each frame type. Estimating the SNR using only
the compressed video is in general a difficult task [8]; in this
paper, we arbitrarily take σ2

P = 2σ2
I , or equivalently assign

weights 2 and 1 to I-frames and P-frames, respectively. Please
be reminded that this setting is merely to demonstrate that
proper weighting may improve PRNU estimation.

We compare the sequential frame parsing (i.e., reading
frames from the beginning of the video in a sequential man-
ner), the proposed frame reordering mechanism with equal
weights, and the proposed frame reordering mechanism with
the 2 : 1 weights. Fig. 3 shows the PCE values for these
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Fig. 4. ROC curve with 100 frames for PRNU estimation.

three mechanisms, averaging over totally 100 videos from 5
cameras. One can see that 1) with more frames, the differ-
ence between the match and mismatch cases becomes more
obvious; 2) the frame reordering mechanism significantly in-
creases the PCE values, especially when the frame number
is smaller; 3) for all the frame numbers, the 2 : 1 weights
assigned to I-frames and P-frames create additional increase
in PCE. Note that these two mechanisms do not increase the
PCE in the mismatch case.

We also compare these mechanisms in terms of their
source camera identification accuracy. The Receiver Oper-
ating Characteristic (ROC) curves for the three mechanisms
for two frame numbers 100 and 300 are shown in Fig. 4
and 5, where the horizontal axis is the false alarm rate and
the vertical axis is the detection rate. One can see that with
an increased number of frames, the accuracy is improved
for all the three mechanisms. Frame reordering increases
the accuracy especially for a smaller number of frames, and
further improvement can be obtained by assigning higher
weights to more reliable frames. It is also noteworthy that
frame ordering and unequal weighting have a complimentary
nature: the former is advantageous if only a limited number
of frames can be processed, while the latter is more useful if
more frames are available.
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Fig. 5. ROC curve with 300 frames for PRNU estimation.

6. CONCLUSION

In this paper, we explore the impact of compression on
source camera identification using the Photo-Response Non-
Uniformity (PRNU) extracted from compressed videos. We
consider videos generated by cell-phone cameras, which are
strongly compressed to reduce the storage and transmission
requirement. Although the authors in [1] stated that each
frame in a video should be treated equally, we find that dif-
ferent frame types (I and P) actually have different levels of
reliability for PRNU estimation. Motivated by this obser-
vation, we propose an effective mechanism for estimating
the reference PRNU pattern. Moreover, we show that by
reordering and weighting the frames in a video according to
their reliability, we can achieve more accurate source camera
identification with fewer frames used.
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