Sketching for Large-Scale Learning of Mixture Model

<u>N. Keriven</u>^{\star §} A. Bourrier[†] R. Gribonval[§] P. Pérez[‡]

* Université Rennes 1, France
§ INRIA Rennes-Bretagne Atlantique, France
† Gipsa-Lab, St-Martin-d'Hères, France
‡ Technicolor, Cesson Sévigné, France

ICASSP 2016

Outline

Proposed Algorithm

3 Sketching operator for Gaussian Mixture Model

4 Results

Introduction	Proposed Algorithm	Sketching operator for Gaussian Mixture Model	Results	Conclusion
●0000	000	00	0000	

Paths to Compressive Learning

Objective

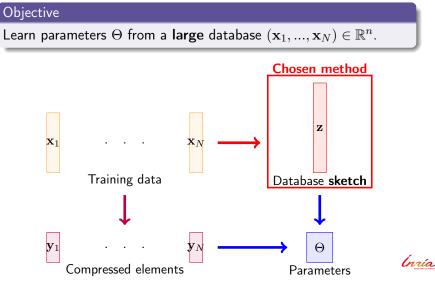
Learn parameters Θ from a large database $(\mathbf{x}_1, ..., \mathbf{x}_N) \in \mathbb{R}^n$.

Examples:

- Learn subspace V_{Θ} of principal components
- Learn parameters of a classifier f_Θ
- Fit a probability distribution p_Θ
- ...

Introduction	Proposed Algorithm	Sketching operator for Gaussian Mixture Model	Results	Conclusion
00000	000	00	0000	

Paths to Compressive Learning



Introduction 0●000	Proposed Algorithm	Sketching operator for Gaussian Mixture Model	Results 0000	Conclusion
In this p	paper:			

In this paper

Efficient method for Gaussian Mixture Model (GMM) estimation from a sketch.

 $\mathsf{Ex}:$ Estimation of a $20\text{-}\mathsf{GMM}$ from a database of 10^6 vectors in \mathbb{R}^{10}

- $\bullet\ 5000\mbox{-fold}$ compression of the database
 - Can be performed efficiently on GPU / clusters
- Estimation process $70 \times$ faster than EM
- Same precision than EM in the result

Introduction	Proposed Algorithm	Sketching operator for Gaussian Mixture Model	Results Conclusion

Approach : Generalized Compressive Sensing

Traditional Compressive Sensing (CS)

From $\mathbf{y} pprox \mathbf{M} \mathbf{x} \in \mathbb{R}^m$ recover vector $\mathbf{x} \in \mathbb{R}^n$

- Linear $\mathbf{M} \in \mathbb{R}^{m \times n}$ with m < n
- Typical assumption: x sparse, etc.

Generalized Compressive Sensing

From $\mathbf{z} \approx \mathcal{A}p \in \mathbb{C}^m$ recover probability distribution $p \in L^1(\mathbb{R}^n)$

Must define:

- Linear operator $\mathcal{A}: L^1(\mathbb{R}^n) \mapsto \mathbb{C}^m$
- Generalized "sparsity" in $L^1(\mathbb{R}^n)$

Introduction	Proposed Algorithm	Sketching operator for Gaussian Mixture Model	Results	Conclusion
00000	000	00	0000	

Sparse probability distributions: Mixture Models

- Set of parametric probability distributions: $\mathcal{G} = \{p_{\theta}; \theta \in \mathcal{T}\}$
- "*K*-sparse" probability distributions :

$$p_{\Theta, \alpha} = \sum_{k=1}^{K} \alpha_k p_{\theta_k}$$

• Sketch $\mathbf{z} = \sum_{k=1}^{K} \alpha_k \mathcal{A} p_{\boldsymbol{\theta}_k}$ as a combination of atoms in the dictionary:

$$\mathcal{D} = \{ \mathcal{A}p_{\boldsymbol{\theta}}; \ \boldsymbol{\theta} \in \mathcal{T} \}$$

Introduction 0000●	Proposed Algorithm	Sketching operator for Gaussian Mixture Model	Results 0000	Conclusion

Application to Compressive Learning

Structure of the sketching operator ${\cal A}$

Collection of generalized moments $M_j : \mathbb{R}^n \mapsto \mathbb{C}$:

$$\mathcal{A}p = [\mathbb{E}_{\mathbf{x}\sim p} M_j(\mathbf{x})]_{j=1\dots m}$$

Compressive Learning procedure

Given a database $(\mathbf{x}_1, ..., \mathbf{x}_N) \stackrel{i.i.d.}{\sim} p$:

- Compute empirical sketch $\hat{\mathbf{z}} = [\hat{\mathbb{E}}M_j(\mathbf{x})]_{j=1...m} \approx \mathcal{A}p$
- Recover $p_{\Theta, \alpha}$ from $\hat{\mathbf{z}}$ using (generalized) CS techniques

Questions:

- Reconstruction algorithm ? (Section 2)
- Choice of sketching operator \mathcal{A} ? (Section 3)

Outline

Introduction

Proposed Algorithm

3 Sketching operator for Gaussian Mixture Model

4 Results

Introduction 00000	Proposed Algorithm ●○○	Sketching operator for Gaussian Mixture Model	Results	Conclusion
Approa	ch			

Cost function

$$\min_{\Theta, \boldsymbol{\alpha}} \| \hat{\mathbf{z}} - \mathcal{A} p_{\Theta, \boldsymbol{\alpha}} \|_2$$

• Similar to $\min_{\mathbf{x}: \|\mathbf{x}\|_0 \leq s} \|\mathbf{y} - \mathbf{M}\mathbf{x}\|_2$ in CS.

- **Pros:** Under some hypothesis on *G* and *A*, yields provably good solutions with high probability (upcoming paper)
- Cons: Generally highly non-convex / intractable
 - Convex relaxation¹: seems difficult because of infinite / continuous dictionary
 - Greedy approaches: approach retained here

¹Florentina Bunea et al. **SPADES and mixture models**. The Annals of *Invia* Statistics (2010)

Introduction	Proposed Algorithm	Sketching operator for Gaussian Mixture Model	Results	Conclusion
00000	000	00	0000	

Orthogonal Matching Pursuit with Replacement

- OMP: add an atom to the support by maximizing its correlation to the residual, update the residual, repeat.
- OMP with Replacement²
 - Perform potentially more iterations than OMP, add a Hard Thresholding step.

Similar to CoSAMP or Subspace Pursuit.

- Compressive Learning OMPR (proposed)
 - Enforce non-negativity on weights lpha
 - Deal with continuous dictionary using gradient descents
 - Add a global optimization step at each iteration.

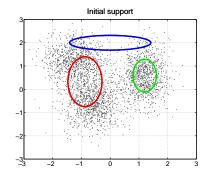
Number of iterations	Compressive Sensing	Compressive Learning
K	OMP	CLOMP
2K	OMPR	CLOMPR

²Prateek Jain, Ambuj Tewari, and Inderjit S. Dhillon. **Orthogonal matching pursuit with replacement**. *NIPS* (2011)

Introduction 00000	Proposed Algorithm 00●	Sketching operator for Gaussian Mixture Model	Results 0000	Conclusion
C				

Example : iteration 4 of CLOMPR, searching for a $3\mbox{-}GMM$

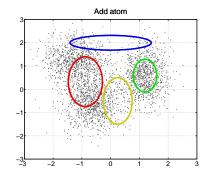
• Current support



Introduction 00000	Proposed Algorithm ○○●	Sketching operator for Gaussian Mixture Model	Results Conclusion
6			

Example : iteration 4 of CLOMPR, searching for a 3-GMM

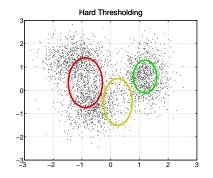
• Add an atom to the support with a gradient descent: $\arg \max_{\theta} Re \left\langle \mathbf{r}, \frac{Ap_{\theta}}{\|Ap_{\theta}\|_{2}} \right\rangle$



Introduction 00000	Proposed Algorithm ○○●	Sketching operator for Gaussian Mixture Model	Results 0000	Conclusion
Company				

Example : iteration 4 of CLOMPR, searching for a 3-GMM

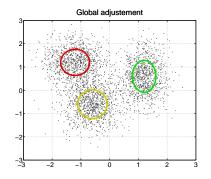
- Hard Thresholding to reduce the support
- Solve a Non-negative Least Squares to find the weights α .



Introduct	ion Propose	ed Algorithm	Sketching operator for Gaussian Mixture Model	Results	Conclusion
~			01400		

Example : iteration 4 of CLOMPR, searching for a $3\mbox{-}GMM$

- New step: global gradient descent initialized with the current parameters to further reduce $\|\hat{\mathbf{z}} Ap_{\Theta,\alpha}\|_2$
- Update residual.



Outline

Proposed Algorithm

Sketching operator for Gaussian Mixture Model

4 Results

Introduction	Proposed Algorithm	Sketching operator for Gaussian Mixture Model	Results	Conclusion
00000	000	•0	0000	

Sketching operator, Gaussian Mixture Model (GMM)

Recover
$$p_{\Theta, \alpha} = \sum_{k=1}^{K} \alpha_k p_{\theta_k}$$
 from $\hat{\mathbf{z}} \approx \mathcal{A}p$.

Gaussian Mixture Model

 $p_{oldsymbol{ heta}} = \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$ with diagonal $oldsymbol{\Sigma}$

Random Sampling of the characteristic function³

Denote $\psi_p(\boldsymbol{\omega}) = \mathbb{E}_{\mathbf{x} \sim p}(e^{i\boldsymbol{\omega}^T \mathbf{x}})$. Given $(\boldsymbol{\omega}_1, ..., \boldsymbol{\omega}_m) \in \mathbb{R}^n$, define

$$\mathcal{A}p = [\psi_p(\boldsymbol{\omega}_j)]_{j=1,\dots,m}$$

• Analog to Random Fourier Sampling: $(\boldsymbol{\omega}_1,...,\boldsymbol{\omega}_m) \stackrel{i.i.d.}{\sim} \Lambda$

³Anthony Bourrier, Rémi Gribonval, and Patrick Pérez. **Compressive** gaussian mixture estimation. *ICASSP* (2013)

Introduction 00000	Proposed Algorithm	Sketching operator for Gaussian Mixture Model ○●	Results Conclusion
<u>р</u>	.1 C	the second second	

Designing the frequency distribution

The frequency distribution must "scale" with the variances of the GMM.

Approach 1 Optimize the variance of a Gaussian frequency distribution

- Requires training data with known distribution
- Classical choice⁴

⁴Dougal J Sutherland et al. Linear-time Learning on Distributions with Invia Approximate Kernel Embeddings. arXiv:1509.07553 (2015)

Introduction 00000	Proposed Algorithm	Sketching operator for Gaussian Mixture Model ⊙●	Results	Conclusion
.		10		

Designing the frequency distribution

The frequency distribution must "scale" with the variances of the GMM.

Approach 1 Optimize the variance of a Gaussian frequency distribution Approach 2 Proposed:

- Partial preprocessing to compute the appropriate "scaling"
- Distribution that aims at maximizing $\|\nabla_{\theta}\psi_{p_{\theta}}\|_2$

The proposed distribution

- Yields better precision in the reconstruction
- Is $20\times$ to $100\times$ faster to design

Outline

Introduction

Proposed Algorithm

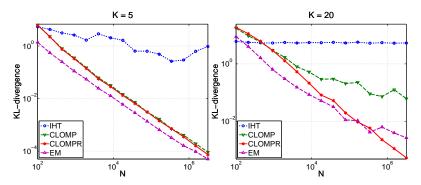
3 Sketching operator for Gaussian Mixture Model

4 Results

Introduction	Proposed Algorithm	Sketching operator for Gaussian Mixture Model 00	Results ●000	Conclusion
Reconst	truction result	te		

Reconstruction results

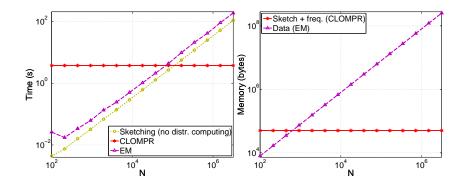
Comparison with EM (VLFeat toolbox) and previous Compressive Learning IHT⁴ (originally designed for GMM with fixed covariance). KL-div (lower is better), n = 10, m = 5(2n + 1)K.



⁴Anthony Bourrier, Rémi Gribonval, and Patrick Pérez. **Compressive** gaussian mixture estimation. *ICASSP* (2013)

Introduction	Proposed Algorithm	Sketching operator for Gaussian Mixture Model	Results 0●00	Conclusion

Memory usage and computation time



• Sketching easily done on GPU

troduction 0000	Proposed Algorithm	Sketching operator for Gaussian Mixture Model	Results 00●0	Conclusion

Application : speaker verification

- NIST2005 database with MFCCs
- Classical method⁵, far from state-of-the-art but serves as a proof of concept

	CLOMPR			FM
	$m = 10^3$	$m = 10^4$	$m = 10^5$	
$N = 3.10^5$	37.15	30.24	29.77	29.53
$N = 2.10^{8}$	36.57	28.96	28.59	N/A

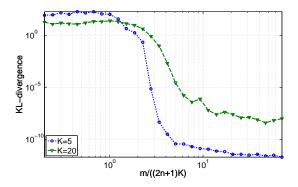
• A large database enhances the quality of the sketch

⁵Douglas A. Reynolds, Thomas F. Quatieri, and Robert B. Dunn. **Speaker** Verification Using Adapted Gaussian Mixture Models. *Digital Signal Processing* 10.1-3 (Jan. 2000)

Introduction	Proposed Algorithm	Sketching operator for Gaussian Mixture Model	Results 000●	Conclusion

Phase transition

Synthetic data



Though we have preliminary theoretical guarantees (upcoming paper), not fully explained yet.

Outline

Introduction

Proposed Algorithm

3 Sketching operator for Gaussian Mixture Model

4 Results

Introduction 00000	Proposed Algorithm	Sketching operator for Gaussian Mixture Model 00	Results 0000	Conclusion
Conclus	ion			

Summary

Effective method to learn GMMs from a sketch, using greedy algorithms and an efficient heuristic to design the sketching operator.

Upcoming paper

- Faster algorithm for GMM with large K
- Preliminary theoretical guarantees

Future Work

- Application to other Mixture Models (α-stable distributions...)
- Generalized theoretical guarantees
- Application to other kernel methods⁶ (classification...)

⁶Dougal J Sutherland et al. Linear-time Learning on Distributions with Approximate Kernel Embeddings. *arXiv:1509.07553* (2015)

Questions ?

Nicolas Keriven et al. Sketching for Large-Scale Learning of Mixture Models. *hal-01208027v3, ICASSP* (2016)