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Paths to Compressive Learning

Objective

Learn parameters Θ from a large database (x1, ...,xN ) ∈ Rn.

Examples:
Learn subspace VΘ of principal components
Learn parameters of a classifier fΘ

Fit a probability distribution pΘ

...
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Paths to Compressive Learning

Objective

Learn parameters Θ from a large database (x1, ...,xN ) ∈ Rn.

x1 . . . xN

Training data

Θ

Parameters

y1 yN. . .

Compressed elements

z

Database sketch

Chosen method
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In this paper:

In this paper

Efficient method for Gaussian Mixture Model (GMM) estimation
from a sketch.

Ex : Estimation of a 20-GMM from a database of 106 vectors in
R10

5000-fold compression of the database
Can be performed efficiently on GPU / clusters

Estimation process 70× faster than EM
Same precision than EM in the result
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Approach : Generalized Compressive Sensing

Traditional Compressive Sensing (CS)

From y ≈Mx ∈ Rm recover vector x ∈ Rn

Linear M ∈ Rm×n with m < n

Typical assumption: x sparse, etc.

Generalized Compressive Sensing

From z ≈ Ap ∈ Cm recover probability distribution p ∈ L1(Rn)

Must define:
Linear operator A : L1(Rn) 7→ Cm

Generalized "sparsity" in L1(Rn)
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Sparse probability distributions: Mixture Models

Set of parametric probability distributions: G = {pθ;θ ∈ T }
"K-sparse" probability distributions :

pΘ,α =

K∑
k=1

αkpθk

Sketch z =
∑K

k=1 αkApθk as a combination of atoms in the
dictionary:

D = {Apθ; θ ∈ T }
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Application to Compressive Learning

Structure of the sketching operator A
Collection of generalized moments Mj : Rn 7→ C:

Ap = [Ex∼pMj(x)]j=1...m

Compressive Learning procedure

Given a database (x1, ...,xN )
i.i.d.∼ p:

Compute empirical sketch ẑ = [ÊMj(x)]j=1...m ≈ Ap
Recover pΘ,α from ẑ using (generalized) CS techniques

Questions:
Reconstruction algorithm ? (Section 2)
Choice of sketching operator A ? (Section 3)
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Approach

Cost function

min
Θ,α
‖ẑ−ApΘ,α‖2

Similar to minx:‖x‖0≤s ‖y −Mx‖2 in CS.

Pros: Under some hypothesis on G and A, yields provably
good solutions with high probability (upcoming paper)

Cons: Generally highly non-convex / intractable
Convex relaxation1: seems difficult because of infinite /
continuous dictionary
Greedy approaches: approach retained here

1Florentina Bunea et al. SPADES and mixture models. The Annals of
Statistics (2010)
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Orthogonal Matching Pursuit with Replacement

OMP: add an atom to the support by maximizing its
correlation to the residual, update the residual, repeat.
OMP with Replacement2

Perform potentially more iterations than OMP, add a Hard
Thresholding step.

Similar to CoSAMP or Subspace Pursuit.
Compressive Learning OMPR (proposed)

Enforce non-negativity on weights α
Deal with continuous dictionary using gradient descents
Add a global optimization step at each iteration.

Number of iterations Compressive Sensing Compressive Learning

K OMP CLOMP
2K OMPR CLOMPR

2Prateek Jain, Ambuj Tewari, and Inderjit S. Dhillon. Orthogonal matching
pursuit with replacement. NIPS (2011)
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Compressive Learning OMPR

Example : iteration 4 of CLOMPR, searching for a 3-GMM

Current support
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Compressive Learning OMPR

Example : iteration 4 of CLOMPR, searching for a 3-GMM

Add an atom to the support with a gradient descent:
arg maxθ Re

〈
r, Apθ‖Apθ‖2

〉
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Compressive Learning OMPR

Example : iteration 4 of CLOMPR, searching for a 3-GMM

Hard Thresholding to reduce the support
Solve a Non-negative Least Squares to find the weights α.
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Compressive Learning OMPR

Example : iteration 4 of CLOMPR, searching for a 3-GMM

New step: global gradient descent initialized with the
current parameters to further reduce ‖ẑ−ApΘ,α‖2
Update residual.
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Sketching operator, Gaussian Mixture Model (GMM)

Recover pΘ,α =
∑K

k=1 αkpθk from ẑ ≈ Ap.

Gaussian Mixture Model

pθ = N (µ,Σ) with diagonal Σ

Random Sampling of the characteristic function3

Denote ψp(ω) = Ex∼p(e
iωTx). Given (ω1, ...,ωm) ∈ Rn, define

Ap = [ψp(ωj)]j=1,...,m

Analog to Random Fourier Sampling: (ω1, ...,ωm)
i.i.d.∼ Λ

3Anthony Bourrier, Rémi Gribonval, and Patrick Pérez. Compressive
gaussian mixture estimation. ICASSP (2013)
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Designing the frequency distribution

The frequency distribution must "scale" with the variances of the GMM.

Approach 1 Optimize the variance of a Gaussian frequency distribution

Requires training data with known distribution
Classical choice4

4Dougal J Sutherland et al. Linear-time Learning on Distributions with
Approximate Kernel Embeddings. arXiv:1509.07553 (2015)
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Designing the frequency distribution

The frequency distribution must "scale" with the variances of the GMM.

Approach 1 Optimize the variance of a Gaussian frequency distribution
Approach 2 Proposed:

Partial preprocessing to compute the appropriate "scaling"
Distribution that aims at maximizing ‖∇θψpθ

‖2

The proposed distribution

Yields better precision in the reconstruction

Is 20× to 100× faster to design
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Reconstruction results

Comparison with EM (VLFeat toolbox) and previous Compressive Learning
IHT4 (originally designed for GMM with fixed covariance). KL-div (lower is
better), n = 10, m = 5(2n+ 1)K.
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gaussian mixture estimation. ICASSP (2013)
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Memory usage and computation time
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Sketching easily done on GPU
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Application : speaker verification

NIST2005 database with MFCCs

Classical method5, far from state-of-the-art but serves as a proof of
concept

CLOMPR EM
m = 103 m = 104 m = 105

N = 3.105 37.15 30.24 29.77 29.53
N = 2.108 36.57 28.96 28.59 N/A

A large database enhances the quality of the sketch

5Douglas A. Reynolds, Thomas F. Quatieri, and Robert B. Dunn. Speaker
Verification Using Adapted Gaussian Mixture Models. Digital Signal
Processing 10.1-3 (Jan. 2000)
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Phase transition

Synthetic data
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Though we have preliminary theoretical guarantees (upcoming paper),
not fully explained yet.

14 / 15



Outline

1 Introduction

2 Proposed Algorithm

3 Sketching operator for Gaussian Mixture Model

4 Results

5 Conclusion



Introduction Proposed Algorithm Sketching operator for Gaussian Mixture Model Results Conclusion

Conclusion

Summary

Effective method to learn GMMs from a sketch, using greedy algorithms
and an efficient heuristic to design the sketching operator.

Upcoming paper

Faster algorithm for GMM with large K

Preliminary theoretical guarantees

Future Work

Application to other Mixture Models (α-stable distributions...)

Generalized theoretical guarantees

Application to other kernel methods6 (classification...)

6Dougal J Sutherland et al. Linear-time Learning on Distributions with
Approximate Kernel Embeddings. arXiv:1509.07553 (2015)

15 / 15



Questions ?

Nicolas Keriven et al. Sketching for Large-Scale Learning of Mixture
Models. hal-01208027v3, ICASSP (2016)
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