ACCELERATING MULTI-USER LARGE VOCABULARY CONTINUOUS
CPU-GPU PLATFORMS

Jungsuk Kim, lan Lane

Carnegie Mellon University

MOTIVATION

 Modern Distributed Speech Recognition (DSR) system for real-time speech application should be:

 ROBUST _ _
* Large Acoustic Models Previous Research: —
. Large Language Models (> 1M words, > 20GB) Heterogeneous CPU-GPU speech recognition is
» RESPONSIVE as ROBUST as “state-of-the-art” |attice rescoring,
e GPU-accelerated (> 10X faster than real-time) but more than 22X RESPONSIVE.

* EFFICIENT
* Support as many concurrent users as possible.

How can we make distributed speech recognition more Efficient?
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Control and data flow

BASELINE SYSTEM ARCHITECTURE
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(0) Iteration control, (1) Extract features (2) Stack incoming (3) Conduct Viterbi (4) Send result back
data preparation, from active audio- frames from active beam search over over TCP/IP, Data-
result handling. Streams into stacked audio-streams and WFEFST and conduct collection.
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* Pros. * Cons.
. Simple thread management.  Low throughput and GPU utilization if audio stream
batch size is small.
Not suitable for multi CPU + single GPU » Server capacity limited by maximum number of inflight
configuration GPU kernels.
« GPU is bottleneckdue to sequentialization of tasks.
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PROPOSED SYSTEM ARCHITECTURE
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. Pros. - Cons.
» Scalable and confiqurable structure. » Complex threads configuration.
» (Can assign more threads to bottleneck phase. * More queuing overheads
* Interleaving frames from different audio streams.
» Can achieve maximum GPU utilization.
* Evaluation Platform * Thread Configuration
* 2 Intel Xeon E5-2697v3 @2.60GHz = 14 cores + 128GB DDR4 CPU CPU-GPU
e NVIDIA Titan X = 3072 CUDA cores @1.22GHz + 12GB GDDR5 Baseline Proposed Baseline Proposed
 Model Specification #1C 2 1 2 1
e Data set: Wall Street Journal + Web Data # ASR 14 X 1 - 2X 8 _
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Number of Active Audio Streams

“Proposed (CPU-GPU)” approach handles 45 active real-time audio streams at an average
latency of 0.3 seconds. (73% more than CPU baseline, 36% more than GPU baseline)

Proposed CPU-GPU heterogeneous architecture is ROBUST, RESPONSIVE and

73% more EFFICIENT than “state of the art’ CPU baseline.
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