ACCELERATING MULTI-USER LARGE VOCABULARY CONTINUOUS CPU-GPU PLATFORMS

Jungsuk Kim, Ian Lane Carnegie Mellon University

MOTIVATION

- Modern Distributed Speech Recognition (DSR) system for real-time speech application should be:
 - <u>ROBUST</u>
 - Large Acoustic Models
 - Large Language Models (> 1M words, > 20GB)
 - <u>RESPONSIVE</u>
 - GPU-accelerated (> 10X faster than real-time)
 - **EFFICIENT**
 - Support as many concurrent users as possible.

Previous Research:

Heterogeneous CPU-GPU speech recognition is as **ROBUST** as "state-of-the-art" lattice rescoring, but more than <u>22X **RESPONSIVE**</u>.

How can we make distributed speech recognition more *Efficient*?

HETEROGENEOUS CPU-GPU LVCSR

Decoding Process

- Prepare Active Hypotheses Set (Phase 0)
- Compute Acoustic Scores (Phase 1)
 - On the GPU, compute acoustic score for current input.
- Language Model Look-up
 - On the CPU, compute likelihoods difference between large and small language models of active hypotheses.
- WFST Search with Rescoring (Phase 2)
 - On the GPU, Frame synchronous N-best Viterbi search is performed on the GPU using WFST network composed with small language model.
 - On the GPU, Rescoring hypotheses "on-the-fly" using language model likelihood difference from CPU.

BASELINE SYSTEM ARCHITECTURE

(0) Iteration control, data preparation, result handling. (1) Extract features from active audiostreams into stacked (2) Stack incoming frames from active audio-streams and (3) Conduct Viterbi beam search over WFST and conduct

(4) Send result back over TCP/IP, Datacollection.

• Pros.

Simple thread management.

Not suitable for *multi CPU + single GPU* configuration

• Cons.

- Low throughput and GPU utilization if audio stream batch size is small.
- <u>Server capacity limited</u> by maximum number of inflight GPU kernels.
- <u>GPU is bottleneck</u> due to sequentialization of tasks.

SPEECH RECOGNITON ON HETEROGENEOUS

Carnegie Nellon University

PROPOSED SYSTEM ARCHITECTURE

• Pros.

- Scalable and configurable structure.
- Can assign more threads to bottleneck phase.
- interleaving frames from different audio streams.
- Can achieve *maximum GPU utilization*.

EVALUATION RESULTS

- Evaluation Platform
 - 2 Intel Xeon E5-2697v3 @2.60GHz = **14 cores** + 128GB DDR4
 - NVIDIA Titan X = 3072 CUDA cores @1.22GHz + 12GB GDDR5

Model Specification

- Data set: Wall Street Journal + Web Data
- Feature: 23th Filterbank coeff.
- Hybrid DNN/HMM (5 hidden layers, **22.7M** parameters)

Vocab.	N-gram	# N-gram	Size (MB)	WFST (MB)
1M	3 (Pruned)	10.1M	407	3,583
	4	769.9M	19,554	-

Thread Configuration

	CPU		CPU-GPU	
	Baseline	Proposed	Baseline	Proposed
# IC	2	1	2	1
# ASR	14 X 1	-	2 X 8	-
# FE	-	2	-	2
# ASC	-	10	-	1
# GS	-	4 X 1	-	2 X 8
# PP	-	2	-	1
Total	16	19	18	22

• Cons.

- Complex threads configuration.
- More queuing overheads

 "Proposed (CPU-GPU)" approach handles <u>45 active real-time audio streams</u> at an <u>average</u> <u>latency of 0.3 seconds.</u> (73% more than CPU baseline, 36% more than GPU baseline)

Proposed CPU-GPU heterogeneous architecture is **ROBUST, RESPONSIVE** and **73% more EFFICIENT** than *"state of the art*" CPU baseline.