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• Pros.
• Simple thread management.

• Cons.
• Low throughput and GPU utilization if audio stream 

batch size is small.
• Server capacity limited by maximum number of inflight 

GPU kernels.
• GPU is bottleneck due to sequentialization of tasks.

• Modern	Distributed	Speech	Recognition (DSR)	system	for	real-time	speech	application	should	be:
• ROBUST

• Large	Acoustic	Models	
• Large	Language	Models	 (>	1M	words,	>	20GB)

• RESPONSIVE
• GPU-accelerated		(>	10X	faster	than	real-time)

• EFFICIENT
• Support	as	many	concurrent	users	as	possible.

Heterogeneous CPU-GPU speech recognition is 
as ROBUST as “state-of-the-art” lattice rescoring,

but more than 22X RESPONSIVE.

Previous Research:

How can we make distributed speech recognition more Efficient?

HETEROGENEOUS CPU-GPU LVCSR

Control	and	data	flow

- Prepare	Active	Hypotheses	Set	(Phase	0)
- Compute	Acoustic	Scores	(Phase	1)

• On	the	GPU,	compute	acoustic	score	for	current	input.
- Language	Model	Look-up	

• On	the	CPU, compute likelihoods	difference	between	
large	and	small	language	models of	active	hypotheses.

- WFST	Search	with	Rescoring	(Phase	2)
• On	the	GPU,	Frame	synchronous	N-best	Viterbi	search is	

performed	on	the	GPU	using	WFST	network	composed	
with	small	language	model.

• On	the	GPU,	Rescoring	hypotheses	“on-the-fly” using	
language	model	likelihood	difference	from	CPU.
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PROPOSED SYSTEM ARCHITECTURE

SPEECH RECOGNITON ON HETEROGENEOUS 

EVALUATION RESULTS

Vocab. N-gram # N-gram Size (MB) WFST (MB)

1M 3 (Pruned) 10.1M 407 3,583
4 769.9M 19,554 -

• Model	Specification
• Data	set:	Wall	Street	Journal	+	Web	Data
• Feature:	23th Filterbank coeff.
• Hybrid	DNN/HMM	(5	hidden	layers,	22.7M parameters)

• Evaluation	Platform
• 2		Intel	Xeon	E5-2697v3@2.60GHz	=	14	cores	+	128GB	DDR4
• NVIDIA	Titan	X	=	3072	CUDA	cores	@1.22GHz	+	12GB	GDDR5
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• Pros.
• Scalable and configurable structure.
• Can assign more threads to bottleneck phase.
• interleaving frames from different audio streams.
• Can achieve maximum GPU utilization.

• Cons.
• Complex threads configuration.
• More queuing overheads

• Thread	Configuration
CPU CPU-GPU

Baseline Proposed Baseline Proposed
# IC 2 1 2 1

# ASR 14 X 1 - 2 X 8 -
# FE - 2 - 2

# ASC - 10 - 1
# GS - 4 X 1 - 2 X 8
# PP - 2 - 1
Total 16 19 18 22

26 (1.0X) 33 (1.27X) 45 (1.73X)

• “Proposed (CPU-GPU)” approach handles 45 active real-time audio streams at an average 
latency of 0.3 seconds. (73% more than CPU baseline, 36% more than GPU baseline)

Proposed CPU-GPU heterogeneous architecture is ROBUST, RESPONSIVE and 
73% more EFFICIENT than “state of the art” CPU baseline.


