Christina Boucher, Travis Gagie, Tomohiro I, Dominik Köppl, Ben Langmead, Giovanni Manzini, Gonzalo Navarro, Alejandro Pacheco, Massimiliano Rossi

PHONI

Streamed Matching Statistics with Multi-Genome References

bandana banana

how fits banana into bandana?

why? MS ⇒ maximal exact matches (MEMs) ⇒ seed and extend ⇒ read alignment

longest prefix of *P*[1..] occurring in *T*

(2,1)

MS computation

used data	space		time	
structure	in bits	build	query	authors
suffix tree (ST)	O(<i>n</i> lg <i>n</i>)	O(<i>n</i>)	$O(P \lg \sigma)$	folklore
compressed ST (CST)	Ο(<i>n</i> lg σ)	O(<i>n</i>)	O(<i>P</i> lg σ)	Belazzougui+ '18
<i>r</i> -index + grammar	O(r lg n + z lg² n)	O(<i>n</i> lg <i>r</i>)	O(<i>P</i> (lg <i>r</i> + lg lg <i>n</i>))	Bannai+ '20 Rossi+ '21

n = |T|, σ : alphabet size, r: #runs in BWT, z: #LZ77 factors

space important?

construction of CST with

- *T*: up to 1000x
 Chromosome 19 samples
- 64 GB of RAM available

 \Rightarrow can index only 64 sequences!

sequences in T

- Chromosome 19 needs ~ 60 MB in ASCII
- CST implementation: cst_sct3 of sdsl-lite

space important?

MONI [Rossi+ RECOMB '21]:

- *r*-index [Gagie+ '20],
- Big BWT [Boucher+ '19],
- and data structures for MS

memory requirement scales roughly logarithmic!

MONI : augmented *r*-index

steps:

- determine *R* by backward search
- then compute *L*:
 - scan *R* and *P* from left to right

idea of PHONI: compute *L* directly with a grammar index

- random access to T for computing L[i] = LCP(T [R[i]..], P[i..])
- needs to store *P* and *R*
- for large *P* : streaming *P* and MS becomes interesting

MS computation

BWT	F	for this talk simplified:
a	\$	 BWT instead of <i>r</i>-index
n d	a\$	 only compute L
d b	ana\$ andana\$	 compute <i>R</i> with suffix array
ם \$	bandana\$	(SA)
₽ N	dana\$	(<i>r</i> -index: SA entries for each run
a	na\$	boundary)
a	ndana\$	12

1 2 3 4 5 6 Ρ b a a n a continue with q' or q'': closest neighbors of q in BWT with letter n LCP(*P*[*i*..], *T* [*q'*..]) and LCP(*P*[*i*..], *T* [*q*"..]) : which is longer? \Rightarrow continue with q'

continue backward steps 2 3 6 4 5 1 BWT F Ρ b n a a n a \$ a a\$ n LCP: 1 3 2 2 ana\$ C b andana\$ bandana\$ \$ dana\$ n na\$ a ndana\$ a

P = b a n a n a n a L = 3 3 2 3 2 1

actually: can use previous BWT position for LCP computation ⇒ LCE queries

LCE grammar

grammar answering longest common extension (LCE) queries

- use RePair + prefix free parsing [Gagie+ '19]
- random access on SLP [Gagie+ '20]
 SLP = straight line program (special kind of grammar)
- already used in MONI for random access on *T*

prefix free parsing (PFP)

- factorize *T* context-sensitively
- same substrings have nearly same factorization

prefix free parsing (PFP)

• build grammar on each factor F_x independently

LCE(p_1, p_2) = LCP($T[p_1..], T[p_2..]$)

- traverse from root down
- compare character-wise

but this is slow

- slower than MONI
- the larger *T* the faster the execution of PHONI

why is the latter?

• the larger *T* the less likely backward search fails

time for MS per sequence

sequences in T

P = one of 10x Chromosome 19 sequences not in *T*

faster LCE queries

- character-wise comparison will hit factor boundary at the same time
- \Rightarrow ascend and compare node by node!

with faster LCEs ...

PHONI faster than MONI at *T* = 1000 sequences!

time for MS per sequence 12 PHONI 11.5 -MONI 11 time [min] 10.5 -10 -9.5 9 8.5 16 32 64 100 256 512 000

sequences in T

(y axis is closer zoomed)

MONI / PHONI : build dependencies

index construction

T consists of multiple Chromosome 19 sequences

maximal RAM usage during queries

MONI additionally needs

- thresholds,
- each pattern and its *R* stored in RAM

sequences in T

P = one of 10x Chromosome 19 sequences not in T

maximal RAM usage during queries

- fix T = 64 sequences
- let $P = (P_1, ..., P_{10})$
- compute MS for the prefix of P_i covering x% of P_i

what is PHONI?

- computation of matching statistics for highly repetitive T (e.g. T = pan-genome)
- stands on the shoulders of giants:
 - *r*-index [Gagie+ '20] [Bannai+ '20]
 - Big BWT [Boucher+ '19]
 - PFP grammar [Gagie+ '20]

our contribution:

- LCE queries on PFP grammars
- theoretically inferior to MONI, but practically competitive if
 - *P* is large : since we can stream
 P, and
 - − large parts of *P* occur in *T* ⇒ only few LCE queries