
PHONI

Christina Boucher,
Travis Gagie,
Tomohiro I,
Dominik Köppl,
Ben Langmead,
Giovanni Manzini,
Gonzalo Navarro,
Alejandro Pacheco,
Massimiliano Rossi

Streamed Matching Statistics
with

Multi-Genome References

2

matching statistics (MS)

b a n a n ab a n d a n a

how fits banana
into bandana?

why? MS maximal exact matches (MEMs) ⇒
 ⇒ seed and extend read alignment⇒

3

matching statistics (MS)

● text T
● pattern P

matching statistics (R, L) is
● P[i .. i + L[i]-1] = T [R[i]..R[i]+L[i]-1]
● P[i .. i + L[i]] does not occur

1 2 3 4 5 6

P = b a n a n a

 1 2 3 4 5 6

P = b a n a n a
R = 1 5 6 5 6 2
L = 3 3 2 3 2 1

1 2 3 4 5 6 7

T = b a n d a n a

there is no P[2..5] = anan in T

4

matching statistics (MS)

1 2 3 4 5 6

P = b a n a n a
1 2 3 4 5 6 7

T = b a n d a n a
(1,3)

longest prefix of P[1..] occurring in T

5

matching statistics (MS)

1 2 3 4 5 6

P = b a n a n a
1 2 3 4 5 6 7

T = b a n d a n a

(2,1)
(6,2)

(5,3)
(6,2)

(5,3)
(1,3)

6

matching statistics (MS)

1 2 3 4 5 6

P = b a n a n a
1 2 3 4 5 6 7

T = b a n d a n a

(2,1)
(6,2)

(5,3)
(6,2)

(5,3)
(1,3)

 1 2 3 4 5 6

P = b a n a n a
R = 1 5 6 5 6 2
L = 3 3 2 3 2 1

obtain MS

7

matching statistics (MS)

1 2 3 4 5 6

P = b a n a n a
1 2 3 4 5 6 7

T = b a n d a n a

(2,1)
(2,1) (5,1) (7,1)

R not uniquely defined

8

MS computation

used data space time

structure in bits build query authors

suffix tree (ST) O(n lg n) O(n) O(|P| lg σ) folklore

compressed
ST (CST)

O(n lg σ) O(n) O(|P| lg σ)
Belazzougui+
'18

r-index +
grammar

O(r lg n +
z lg2 n)

O(n lg r)
O(|P|
(lg r + lg lg n))

Bannai+ '20
Rossi+ '21

n = |T|, σ : alphabet size, r : #runs in BWT, z : #LZ77 factors

9

space important?

construction of CST with
● T : up to 1000x

Chromosome 19 samples
● 64 GB of RAM available

 ⇒ can index only 64 sequences!

● Chromosome 19 needs ~ 60 MB in ASCII
● CST implementation: cst_sct3 of sdsl-lite

10

space important?

MONI [Rossi+ RECOMB '21]:
● r-index [Gagie+ '20],
● Big BWT [Boucher+ '19],
● and data structures for MS

memory requirement scales
roughly logarithmic!

log scale

11

MONI : augmented r-index

steps:
● determine R by backward search
● then compute L:

– scan R and P from left to right
– random access to T for computing L[i] =LCP(T [R[i]..], P[i..])

● needs to store P and R
● for large P : streaming P and MS becomes interesting

idea of PHONI:
compute L directly with

a grammar index

12

MS computation

a
n
d
b
$
n
a
a

$
a$
ana$
andana$
bandana$
dana$
na$
ndana$

F
$
a
a
a
b
d
n
n

BWT for this talk simplified:
● BWT instead of r-index
● only compute L
● compute R with suffix array

(SA)

(r-index: SA entries for each run
boundary)

13

backward steps

a
n
d
b
$
n
a
a

$
a$
ana$
andana$
bandana$
dana$
na$
ndana$

F
$
a
a
a
b
d
n
n

1 2 3 4 5 6

P = b a n a n a

L = ? 3 2 1
stop because d ≠ n

BWT

14

matching pair

a
n
d
b
$
n
a
a

$
a$
ana$
andana$
bandana$
dana$
na$
ndana$

F
$
a
a
a
b
d
n
n

q

q''

q'

LCP(P[i..], T [q'..]) and
LCP(P[i..], T [q''..]) :
which is longer?

LCP: 1

LCP: 0
 ⇒ continue with q'

1 2 3 4 5 6

P = b a n a n a

continue with q' or q'':
closest neighbors of q in BWT
with letter n

BWT

text
position i

15

continue backward steps

a
n
d
b
$
n
a
a

$
a$
ana$
andana$
bandana$
dana$
na$
ndana$

F
$
a
a
a
b
d
n
n

BWT
1 2 3 4 5 6

P = b a n a n a

L = 2 3 2 1LCP: 1

16

continue backward steps

a
n
d
b
$
n
a
a

$
a$
ana$
andana$
bandana$
dana$
na$
ndana$

F
$
a
a
a
b
d
n
n

BWT
1 2 3 4 5 6

P = b a n a n a

L = ? 3 2 3 2 1

17

find continuation again

a
n
d
b
$
n
a
a

$
a$
ana$
andana$
bandana$
dana$
na$
ndana$

F
$
a
a
a
b
d
n
n

BWT
1 2 3 4 5 6

P = b a n a n a

L = 3 3 2 3 2 1

LCP: 2

we want to stream P, so we
have not P for LCP queries!

18

from LCP to LCE

a
n
d
b
$
n
a
a

$
a$
ana$
andana$
bandana$
dana$
na$
ndana$

F
$
a
a
a
b
d
n
n

BWT

actually: can use
previous BWT position
for LCP computation

 ⇒ LCE queries

1 2 3 4 5 6

P = b a n a n a

L = 3 3 2 3 2 1

19

LCE grammar

grammar answering longest common extension (LCE) queries
● use RePair + prefix free parsing [Gagie+ '19]
● random access on SLP [Gagie+ '20]

SLP = straight line program (special kind of grammar)
● already used in MONI for random access on T

20

prefix free parsing (PFP)

● factorize T context-sensitively
● same substrings have nearly same factorization

T =
F2F1 F3 F4 F5

S S

21

prefix free parsing (PFP)
● build grammar on each factor Fx independently
● build grammar on roots

T = F2 F4F1 F3 F5

22

LCE(p1, p2) = LCP(T [p1..], T [p2..])

● traverse from root down
● compare character-wise

T = F2 F4F1 F3 F5

p1
p2

23

but this is slow

● slower than MONI
● the larger T the faster the

execution of PHONI

why is the latter?
● the larger T the less likely

backward search fails

P = one of 10x Chromosome 19 sequences not in T

time for MS per sequence

24

faster LCE queries

T =

● character-wise comparison will hit factor boundary at the
same time

 ⇒ ascend and compare node by node!

......

p1 p2

25

with faster LCEs ...

PHONI faster than MONI at
T = 1000 sequences!

time for MS per sequence

(y axis is closer zoomed)

26

MONI / PHONI : build dependencies

T

r-index

grammar

thresholds

MONIPHONI

27

index construction
time space

T consists of multiple Chromosome 19 sequences

gap to MONI
due to

thresholds

28

maximal RAM usage during queries

MONI additionally needs
● thresholds,
● each pattern and its R

stored in RAM

P = one of 10x Chromosome 19 sequences not in T

29

maximal RAM usage during queries

● fix T = 64 sequences
● let P = (P1 , ... , P10)
● compute MS for the prefix

of Pi covering x% of Pi

0% 25% 50% 75% 100%

Pi =

30

what is PHONI?
● computation of matching

statistics for highly repetitive T
(e.g. T = pan-genome)

● stands on the shoulders of
giants:
– r-index [Gagie+ '20] [Bannai+ '20]
– Big BWT [Boucher+ '19]
– PFP grammar [Gagie+ '20]

our contribution:
● LCE queries on PFP grammars
● theoretically inferior to MONI,

but practically competitive if
– P is large : since we can stream

P, and
– large parts of P occur in T

 only few LCE queries⇒

	Slide: 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

