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matching statistics (MS)

b a n a n ab a n d a n a

 

how fits banana 
into bandana?

why? MS  maximal exact matches (MEMs) ⇒
 ⇒ seed and extend  read alignment⇒
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matching statistics (MS)

● text T
● pattern P

matching statistics (R, L) is
● P[i .. i + L[i]-1] = T [R[i]..R[i]+L[i]-1]
● P[i .. i + L[i]] does not occur

1 2 3 4 5 6

P = b a n a n a

 1 2 3 4 5 6

P = b a n a n a
R = 1 5 6 5 6 2
L = 3 3 2 3 2 1

1 2 3 4 5 6 7

T = b a n d a n a

there is no P[2..5] = anan in T
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matching statistics (MS)

1 2 3 4 5 6

P = b a n a n a
1 2 3 4 5 6 7

T = b a n d a n a
(1,3)

longest prefix of P[1..] occurring in T
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matching statistics (MS)

1 2 3 4 5 6

P = b a n a n a
1 2 3 4 5 6 7

T = b a n d a n a

(2,1)
(6,2)

(5,3)
(6,2)

(5,3)
(1,3)
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matching statistics (MS)

1 2 3 4 5 6

P = b a n a n a
1 2 3 4 5 6 7

T = b a n d a n a

(2,1)
(6,2)

(5,3)
(6,2)

(5,3)
(1,3)

 1 2 3 4 5 6

P = b a n a n a
R = 1 5 6 5 6 2
L = 3 3 2 3 2 1

obtain MS
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matching statistics (MS)

1 2 3 4 5 6

P = b a n a n a
1 2 3 4 5 6 7

T = b a n d a n a

(2,1)
(2,1) (5,1) (7,1)

R not uniquely defined
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MS computation

used data space time

structure in bits build query authors

suffix tree (ST) O(n lg n) O(n) O(|P| lg σ) folklore

compressed
ST (CST)

O(n lg σ) O(n) O(|P| lg σ)
Belazzougui+ 
'18

r-index + 
grammar

O(r lg n + 
z lg2 n)

O(n lg r)
O(|P| 
(lg r + lg lg n)) 

Bannai+ '20
Rossi+ '21

n = |T|,    σ : alphabet size,    r : #runs in BWT,     z : #LZ77 factors
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space important?

construction of CST with 
● T : up to 1000x 

Chromosome 19 samples
● 64 GB of RAM available 

 ⇒ can index only 64 sequences!

● Chromosome 19 needs ~ 60 MB in ASCII
● CST implementation:  cst_sct3 of sdsl-lite
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space important?

MONI [Rossi+ RECOMB '21]:
● r-index [Gagie+ '20],
● Big BWT [Boucher+ '19],
● and data structures for MS

memory requirement scales 
roughly logarithmic! 

log scale
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MONI : augmented r-index

steps:
● determine R by backward search
● then compute L:

– scan R and P from left to right 
– random access to T for computing L[i] =LCP(T [R[i]..], P[i..]) 

● needs to store P and R
● for large P : streaming P and MS becomes interesting

idea of PHONI:
compute L directly with

a grammar index
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MS computation

a
n
d
b
$
n
a
a

 
$
a$
ana$
andana$
bandana$
dana$
na$
ndana$

F
$
a
a
a
b
d
n
n

BWT for this talk simplified:
● BWT instead of r-index
● only compute L
● compute R with suffix array 

(SA)

(r-index: SA entries for each run 
boundary)



13

backward steps

a
n
d
b
$
n
a
a

 
$
a$
ana$
andana$
bandana$
dana$
na$
ndana$

F
$
a
a
a
b
d
n
n

1 2 3 4 5 6

P = b a n a n a

L = ? 3 2 1
stop because d ≠ n

 
BWT
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matching pair

a
n
d
b
$
n
a
a

 
$
a$
ana$
andana$
bandana$
dana$
na$
ndana$

F
$
a
a
a
b
d
n
n

q

q''

q'

LCP(P[i..], T [q'..]) and 
LCP(P[i..], T [q''..]) :
which is longer?

LCP: 1

LCP: 0
 ⇒ continue with q'

1 2 3 4 5 6

P = b a n a n a

continue with q' or q'': 
closest neighbors of q in BWT 
with letter n

BWT
 

text 
position i
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continue backward steps

a
n
d
b
$
n
a
a

 
$
a$
ana$
andana$
bandana$
dana$
na$
ndana$

F
$
a
a
a
b
d
n
n

BWT
1 2 3 4 5 6

P = b a n a n a

L = 2 3 2 1LCP: 1
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continue backward steps
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a
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ana$
andana$
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F
$
a
a
a
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n

BWT
1 2 3 4 5 6

P = b a n a n a

L = ? 3 2 3 2 1
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find continuation again

a
n
d
b
$
n
a
a

 
$
a$
ana$
andana$
bandana$
dana$
na$
ndana$

F
$
a
a
a
b
d
n
n

BWT
1 2 3 4 5 6

P = b a n a n a

L = 3 3 2 3 2 1

 

LCP: 2

we want to stream P, so we 
have not P for LCP queries!
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from LCP to LCE

a
n
d
b
$
n
a
a

 
$
a$
ana$
andana$
bandana$
dana$
na$
ndana$

F
$
a
a
a
b
d
n
n

BWT

actually: can use 
previous BWT position 
for LCP computation

 ⇒ LCE queries

1 2 3 4 5 6

P = b a n a n a

L = 3 3 2 3 2 1
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LCE grammar

grammar answering longest common extension (LCE) queries
● use RePair + prefix free parsing  [Gagie+ '19]
● random access on SLP [Gagie+ '20]

SLP = straight line program (special kind of grammar)
● already used in MONI for random access on T
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prefix free parsing (PFP)

● factorize T context-sensitively
● same substrings have nearly same factorization

T =
F2F1 F3 F4 F5

S S
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prefix free parsing (PFP)
● build grammar on each factor Fx independently
● build grammar on roots

T = F2 F4F1 F3 F5
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LCE(p1, p2) = LCP(T [p1..], T [p2..])

● traverse from root down
● compare character-wise

T = F2 F4F1 F3 F5

p1
p2
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but this is slow

● slower than MONI
● the larger T the faster the 

execution of PHONI

why is the latter?
● the larger T the less likely 

backward search fails

P = one of 10x Chromosome 19 sequences not in T

time for MS per sequence
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faster LCE queries

T =

● character-wise comparison will hit factor boundary at the 
same time

 ⇒ ascend and compare node by node!

......

p1 p2
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with faster LCEs ...

PHONI faster than MONI at 
T = 1000 sequences!

time for MS per sequence

(y axis is closer zoomed)
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MONI / PHONI : build dependencies

T

r-index

grammar

thresholds

MONIPHONI
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index construction
time space

T consists of multiple Chromosome 19 sequences

gap to MONI 
due to 

thresholds
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maximal RAM usage during queries

MONI additionally needs
● thresholds,
● each pattern and its R

stored in RAM

P = one of 10x Chromosome 19 sequences not in T
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maximal RAM usage during queries

● fix T = 64 sequences 
● let P = (P1 , ... , P10 )
● compute MS for the prefix 

of Pi covering x% of Pi

0%   25%    50%     75%  100%

Pi =
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what is PHONI?
● computation of matching 

statistics for highly repetitive T 
(e.g. T = pan-genome)

● stands on the shoulders of 
giants:
– r-index [Gagie+ '20] [Bannai+ '20]
– Big BWT [Boucher+ '19]
– PFP grammar [Gagie+ '20]

our contribution:
● LCE queries on PFP grammars
● theoretically inferior to MONI, 

but practically competitive if 
– P is large : since we can stream 

P, and 
– large parts of P occur in T 

 only few LCE queries⇒
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