Deep Scattering Network with Max-pooling

Taekyung Ki^a and **Youngmi Hur**^{a,b}

^aYonsei University, Korea ^bKIAS, Korea

DCC 2021

1. CNN and Scattering Network

Figure 1: Two parts of CNN [\[1\]](#page-17-1) and the role of scattering network [\[2\]](#page-17-2).

Scattering Network

Figure 2: Propagation of scattering network. Input f is propagated toward deeper network by convolving with pre-defined wavelets followed by modulus. Two paths, $p=(\lambda_1,\cdots,\lambda_m)$ of length m and $q=(\lambda'_1,\cdots,\lambda'_n)$ of length n , are shown.

2. Scattering Network with Max-pooling [\[3\]](#page-17-3)

Definition 1 (Continuous Plate)

Let ${\mathcal A}$ be a collection of $f:\mathbb{R}^d\to\mathbb{R}$ with compact support. If there exist rectangular compact regions $D, D^{(i)}\subset \mathbb{R}^d$, $i=1,2,\cdots,N$ satisfying

•
$$
\bigcup_{f \in \mathcal{A}} \mathrm{supp}(f) \subset D \text{ and } 0 \in D,
$$

$$
\bullet \ D=\bigcup_{i=1}^N D^{(i)},
$$

•
$$
\forall i = 1, 2, \cdots, N, |D^{(i)}| = |D|/N,
$$

 $\exists k \in \mathbb{R}^d$ such that $\left|\left\{x \in \mathbb{R}^d : x \in \left(D^{(i)} - (D^{(j)} + k)\right)\right\}\right| = 0$ if $i \neq j$,

we say D is a $\bf{continuous\ plate\ of\ } {\cal A}$ and $D^{(i)}$ is the *i-*th sub-plate of $D.$

Definition 2 (Continuous Max-pooling)

Let $\mathcal A$, D and $D^{(i)}$ be defined as in Def. 1. Let $L^\infty(D):=L^\infty(\mathbb R^d)\cap \mathcal A.$ For $f\in L^\infty(D)$ and $S>(|D|\|f\|_\infty/\|f\|_2)^{1/d}$, a continuous max-pooling **operator** $P: L^{\infty}(D) \to L^{\infty}(D)$ (with a pooling factor S) is defined by

$$
P(f)(x) := \sum_{i=1}^N \|f \chi_{D^{(i)}}\|_{\infty} \chi_{D^{(i)}}(Sx).
$$

(Note: $|D||f||_{\infty}/||f||_2 > 1$, hence $S > 1$.)

Definition 3 (Windowed Pooled-Scattering Transform)

Let $J \in \mathbb{Z}$ be fixed, and let $\lambda := (j,r)$, $j > -J$, $r \in \mathsf{G}^+$. For pre-defined wavelet $\psi \in L^2(\mathbb{R}^d)$, let $\psi_\lambda(x) := 2^{dj} \psi(2^j r^{-1} x)$. Let P be the continuous max-pooling with a pooling factor S . Let $q = (\lambda_1, \lambda_2, \cdots, \lambda_m)$ be a path of length m. We define \bullet $\ddot{U}[\emptyset] = P$ $\bullet \ \tilde{U}[\lambda]: L^{\infty}(D) \to L^{\infty}(D/S): f \mapsto \tilde{U}[\lambda]f = P(|\psi_{\lambda}*f|)$ $\tilde{U}[q]: L^{\infty}(D) \rightarrow L^{\infty}(D/S^m): f \mapsto \tilde{U}[q]f := \tilde{U}[\lambda_m]\tilde{U}[\lambda_{m-1}] \cdots \tilde{U}[\lambda_1]f$ A **windowed pooled-scattering transform** $\tilde{S}_J[q]$ is defined by

$$
\tilde{S}_J[q]f := (\phi_{2^J} * \tilde{U}[q]f), \ \ \forall f \in L^{\infty}(D),
$$

where $\phi_{2^J}\!(x) := 2^{-dj}\phi(2^{-J}x)$ is a low-pass kernel from $\phi \in L^2(\mathbb{R}^d).$

Scattering-maxp Network

Figure 3: Propagation of **scattering-maxp network**. It is obtained by the windowed pooled-scattering transform. Two paths, p and q , are highlighted.

Translation Invariance of Scattering-maxp Network

Theorem 1. (Translation Invariance)

Suppose $c\in\mathbb{R}^d$ satisfies $0\in D+c$ and $|\hat{\phi}(\omega)|(\omega)|< B$ a.e. $\omega\in\mathbb{R}^d$ for some $B > 0$ Then

$$
\lim_{m\to\infty}\sum_{p\in\Lambda_J^m}\|\tilde{S}_J[p]f-\tilde{S}_J[p]\mathsf{T}_cf\|_2^2=0,\quad f\in L^\infty(D)
$$

where Λ^m_J is the set of all possible paths $\rho=(\lambda_1,\cdots,\lambda_m)$ of length $m,$ $\hat{\phi}$ is the Fourier transform of ϕ , and $T_c f(x) = f(x - c)$ is the translation by c.

3. Experimental Results [\[3\]](#page-17-3), [\[4\]](#page-17-4)

Figure 4: **Scattering**. f is an input. 4 fully-connected layers are added right after computing the output of scattering. The output of the model is calculated by soft-max.

Scattering-maxp

Figure 5: **Scattering-maxp**. It is based on the original one as in Figure [4](#page-8-0) but two 2 \times 2 max-poolings (with 2 \times 2 stride) are inserted right after the scattering layer-1 and layer-2.

Scattering-naivep

Figure 6: Scattering-naivep. It is based on the original one as in Figure [4](#page-8-0) but additional uses 3×3 max-pooling (with 3×3 stride) right after calculating the output of scattering.

Training Set-up

- CPU: Intel(R) Xeon(R) Gold 5210 @ 2.20GHz / GPU: Tesla V100-32GB.
- TensorFlow 1.15.1 / Keras 2.2.4-tf.
- Loss: Categorical cross-entropy / Optimizer: Adam
- Data Augmentations: Horizontal flip & 8 rotations from -20° to 20° .
- **Batch Size: 256**
- Ratio of the Training Data and the Validation Data: 3 to 1.
- Input Size: 224×224 .

Datasets: Caltech-101 / Caltech-256

Figure 7: Datasets for experiments: (Left) Caltech-101 [\[5\]](#page-17-5) (Right) Caltech-256 [\[6\]](#page-17-6)

Figure 8: Performance of scattering based models on Caltech-101 (300 epochs). (Left) Original scattering and scattering-naivep. (Right) Original scattering and scattering-maxp. The learning rate is 10^{-3} during the training session.

Table 1: Classification results on Caltech-101.

Figure 9: Performance of scattering based models on Caltech-256 (200 epochs). (Left) Original scattering and scattering-naivep. (Right) Original scattering and scattering-maxp. The learning rate is adjusted to be 10^{-3} from the beginning, 10^{-4} after 50 epochs, and 10^{-5} after 75 epochs.

Table 2: Classification results on Caltech-256.

References

- [1] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. HUBBARD, AND L. D. JACKEL, Backpropagation Applied to Handwritten Zip Code Recognition, Neural Computation, vol.1, pp.541-551, 1989
- [2] S. MALLAT, Group Invariant Scattering, Communications on Pure and Applied Mathematics, vol.65, pp.1331-1398, 2012.
- [3] T. KI AND Y. HUR, Deep scattering network with Max-pooling, preprint, (https://arxiv.org/abs/2101.02321), 2021.
- [4] https://github.com/TaekyungKi/Scattering_maxp.
- [5] L. FEI-FEI, R. FERGUS AND P. PERONA., Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories, in Conference on Computer Vision and Pattern Recognition Workshop, 2004.
- [6] G. GRIFFIN, A. HOLUB, AND P. PERONA., *Caltech-256 object category dataset*, preprint, 2007.