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1. CNN and Scattering Network
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Figure 1. Two parts of CNN [1] and the role of scattering network [2].
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Scattering Network
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Figure 2: Propagation of scattering network. Input f is propagated toward deeper
network by convolving with pre-defined wavelets followed by modulus. Two paths,
p= (M1, ,A\m) of length m and g = (A}, - -, \},) of length n, are shown.
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2. Scattering Network with Max-pooling [3]

Definition 1 (Continuous Plate)

Let A be a collection of f : R? — R with compact support. If there exist
rectangular compact regions D, DO cRY, j=1,2,--- , N satisfying

® Jsreqsupp(f) € Dand 0 € D,

o D=, D0

oVi=1,2,---,N, IDO| = |D|/N,

o Jk € R?such that [{x e R?: x € (D) — (DY) + k))}| = 0 if i # J,
we say D is a continuous plate of A and D) is the i-th sub-plate of D. )
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Definition 2 (Continuous Max-pooling)

Let A, D and D{) be defined as in Def. 1. Let L°(D) := L®°(R9) N A.
For f € L*°(D) and S > (\D\Hf”oo/Hsz)l/d, a continuous max-pooling
operator P : L>°(D) — L*°(D) (with a pooling factor S) is defined by

N
P()(x) == Y 1Fxp0 llsoxpw (SX)-

i=1

(Note: [D|||f]lso/lIfll2 > 1, hence S > 1.)
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Definition 3 (Windowed Pooled-Scattering Transform)

Let J € Z be fixed, and let A := (j,r), j > —J, re G*.

For pre-defined wavelet 1) € L2(RY), let 5(x) := 2%(2/r~1x).
Let P be the continuous max-pooling with a pooling factor S.
Let g = (A1, A2, -+, Am) be a path of length m. We define

° 0[@] =P

o U[N]: L®(D) = L®(D/S) : f +— U[NFf = P(|ihx * f|)

o Ulq]: L®(D) — L*(D/S™) : f = U[q]f := Um]UAm-1]--- O[M]F
A windowed pooled-scattering transform 5[q] is defined by

Silalf = (60 % Olalf), ¥F € L(D),

where ¢y(x) := 27 (27 Ix) is a low-pass kernel from ¢ € L?(R9).
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Scattering-maxp Network
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Figure 3: Propagation of scattering-maxp network. It is obtained by the
windowed pooled-scattering transform. Two paths, p and g, are highlighted.
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Translation Invariance of Scattering-maxp Network

Theorem 1. (Translation Invariance)

Suppose ¢ € R satisfies 0 € D + ¢ and |¢(w)|(w)| < B a.e. w € RY for
some B > 0. Then

lim > |Sy[plf — Slpl TefI5 =0, f € L™(D)

pPENT

where A7 is the set of all possible paths p = (A1, -+, A) of length m, b is
the Fourier transform of ¢, and T.f(x) = f(x — ¢) is the translation by c.

v
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3. Experimental Results [3], [4]
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Figure 4: Scattering. f is an input. 4 fully-connected layers are added right after
computing the output of scattering. The output of the model is calculated by
soft-max.
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Scattering-maxp
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Figure 5: Scattering-maxp. It is based on the original one as in Figure 4 but

two 2 X 2 max-poolings (with 2 x 2 stride) are inserted right after the scattering
layer-1 and layer-2.
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Scattering-naivep
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Figure 6: Scattering-naivep. It is based on the original one as in Figure 4 but
additional uses 3 x 3 max-pooling (with 3 x 3 stride) right after calculating the
output of scattering.
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Training Set-up

CPU: Intel(R) Xeon(R) Gold 5210 @ 2.20GHz / GPU: Tesla
V100-32GB.

TensorFlow 1.15.1 / Keras 2.2.4-tf.

Loss: Categorical cross-entropy / Optimizer: Adam

Data Augmentations: Horizontal flip & 8 rotations from —20° to 20°.
Batch Size: 256

Ratio of the Training Data and the Validation Data: 3 to 1.

Input Size: 224 x 224.
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Datasets: Caltech-101 / Caltech-256
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Experimental Results on Caltech-101
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Figure 8: Performance of scattering based models on Caltech-101 (300 epochs).
(Left) Original scattering and scattering-naivep. (Right) Original scattering and
scattering-maxp. The learning rate is 10~3 during the training session.

Y. Hur Deep Scattering Network with Max-pooling 14 / 18



Experimental Results on Caltech-101

Table 1: Classification results on Caltech-101.

Model # of parameters  Accuracy (%) Training time (s/epoch)
VGG-16 134,677,286 99.58 566
ResNet34 21,344,166 99.21 221
MobileNet 3,332,742 99.95 419
Scattering 87,592,038 98.49 284
Scattering-naivep 11,596,902 94.54 267
Scattering-maxp 9,944,166 98.59 206
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Experimental Results on Caltech-256
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Figure 9: Performance of scattering based models on Caltech-256 (200 epochs).
(Left) Original scattering and scattering-naivep. (Right) Original scattering and
scattering-maxp. The learning rate is adjusted to be 10~3 from the beginning,
10~* after 50 epochs, and 107> after 75 epochs.
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Experimental Results on Caltech-256

Table 2: Classification results on Caltech-256.

Model # of parameters  Accuracy (%) Training time (s/epoch)
VGG-16 135,312,321 98.58 1926
ResNet34 21,423,681 99.97 750
MobileNet 3,491,617 99.99 1433
Scattering 87,631,873 95.06 1006
Scattering-naivep 11,636,737 73.38 982
Scattering-maxp 9,984,001 92.11 651

Y. Hur Deep Scattering Network with Max-pooling 17 / 18



References

(1]

(2]

(3]

(4]
(5]

(6]

Y. LECuUN, B. BOSER, J. S. DENKER, D. HENDERSON, R. E. HOWARD, W.
HuBBARD, AND L. D. JACKEL, Backpropagation Applied to Handwritten Zip
Code Recognition, Neural Computation, vol.1, pp.541-551, 1989

S. MALLAT, Group Invariant Scattering, Communications on Pure and Applied
Mathematics, vol.65, pp.1331-1398, 2012.

T. K1 AND Y. HUR, Deep scattering network with Max-pooling, preprint,
(https://arxiv.org/abs/2101.02321), 2021.

https://github.com/TaekyungKi/Scattering maxp.

L. FEI-FEI, R. FERGUS AND P. PERONA., Learning generative visual models
from few training examples: An incremental bayesian approach tested on 101
object categories, in Conference on Computer Vision and Pattern Recognition
Workshop, 2004.

G. GRIFFIN, A. HOLUB, AND P. PERONA., Caltech-256 object category dataset,
preprint, 2007.

Y. Hur Deep Scattering Network with Max-pooling 18 / 18



	CNN and Scattering Network
	Scattering Network with Max-pooling
	Experimental Results

