Deep Scattering Network with Max-pooling

Taekyung Ki^a and Youngmi Hur^{a,b}

^aYonsei University, Korea ^bKIAS, Korea

DCC 2021

1. CNN and Scattering Network

Figure 1: Two parts of CNN [1] and the role of scattering network [2].

Scattering Network

Figure 2: Propagation of scattering network. Input f is propagated toward deeper network by convolving with pre-defined wavelets followed by modulus. Two paths, $p = (\lambda_1, \dots, \lambda_m)$ of length m and $q = (\lambda'_1, \dots, \lambda'_n)$ of length n, are shown.

2. Scattering Network with Max-pooling [3]

Definition 1 (Continuous Plate)

Let \mathcal{A} be a collection of $f : \mathbb{R}^d \to \mathbb{R}$ with compact support. If there exist rectangular compact regions $D, D^{(i)} \subset \mathbb{R}^d$, $i = 1, 2, \cdots, N$ satisfying

•
$$igcup_{f\in\mathcal{A}} \operatorname{supp}(f)\subset D$$
 and $0\in D$,

•
$$D = \bigcup_{i=1}^N D^{(i)}$$
,

•
$$\forall i = 1, 2, \cdots, N, |D^{(i)}| = |D|/N,$$

• $\exists k \in \mathbb{R}^d$ such that $\left| \left\{ x \in \mathbb{R}^d : x \in \left(D^{(i)} - (D^{(j)} + k) \right) \right\} \right| = 0$ if $i \neq j$,

we say D is a **continuous plate** of A and $D^{(i)}$ is the *i*-th sub-plate of D.

Definition 2 (Continuous Max-pooling)

Let \mathcal{A} , D and $D^{(i)}$ be defined as in Def. 1. Let $L^{\infty}(D) := L^{\infty}(\mathbb{R}^d) \cap \mathcal{A}$. For $f \in L^{\infty}(D)$ and $S > (|D| || f ||_{\infty} / || f ||_2)^{1/d}$, a **continuous max-pooling operator** $P : L^{\infty}(D) \to L^{\infty}(D)$ (with a pooling factor S) is defined by

$$P(f)(x) := \sum_{i=1}^{N} \|f\chi_{D^{(i)}}\|_{\infty} \chi_{D^{(i)}}(Sx).$$

(Note: $|D| ||f||_{\infty} / ||f||_2 \ge 1$, hence S > 1.)

Definition 3 (Windowed Pooled-Scattering Transform)

Let $J \in \mathbb{Z}$ be fixed, and let $\lambda := (j, r), j > -J, r \in G^+$. For pre-defined wavelet $\psi \in L^2(\mathbb{R}^d)$, let $\psi_{\lambda}(x) := 2^{dj}\psi(2^jr^{-1}x)$. Let P be the continuous max-pooling with a pooling factor S. Let $q = (\lambda_1, \lambda_2, \dots, \lambda_m)$ be a path of length m. We define • $\tilde{U}[\emptyset] = P$ • $\tilde{U}[\lambda] : L^{\infty}(D) \to L^{\infty}(D/S) : f \mapsto \tilde{U}[\lambda]f = P(|\psi_{\lambda} * f|)$ • $\tilde{U}[q] : L^{\infty}(D) \to L^{\infty}(D/S^m) : f \mapsto \tilde{U}[q]f := \tilde{U}[\lambda_m]\tilde{U}[\lambda_{m-1}]\cdots\tilde{U}[\lambda_1]f$ A windowed pooled-scattering transform $\tilde{S}_I[q]$ is defined by

$$\widetilde{S}_J[q]f := (\phi_{2^J} * \widetilde{U}[q]f), \quad \forall f \in L^\infty(D),$$

where $\phi_{2^J}(x) := 2^{-dJ}\phi(2^{-J}x)$ is a low-pass kernel from $\phi \in L^2(\mathbb{R}^d)$.

Scattering-maxp Network

Figure 3: Propagation of **scattering-maxp network**. It is obtained by the windowed pooled-scattering transform. Two paths, *p* and *q*, are highlighted.

Translation Invariance of Scattering-maxp Network

Theorem 1. (Translation Invariance)

Suppose $c \in \mathbb{R}^d$ satisfies $0 \in D + c$ and $|\hat{\phi}(\omega)|(\omega)| < B$ a.e. $\omega \in \mathbb{R}^d$ for some B > 0. Then

$$\lim_{m\to\infty}\sum_{p\in\Lambda_J^m}\|\tilde{S}_J[p]f-\tilde{S}_J[p]T_cf\|_2^2=0,\quad f\in L^\infty(D)$$

where Λ_J^m is the set of all possible paths $p = (\lambda_1, \dots, \lambda_m)$ of length m, $\hat{\phi}$ is the Fourier transform of ϕ , and $T_c f(x) = f(x - c)$ is the translation by c.

3. Experimental Results [3], [4]

Figure 4: **Scattering**. *f* is an input. 4 fully-connected layers are added right after computing the output of scattering. The output of the model is calculated by soft-max.

Scattering-maxp

Figure 5: Scattering-maxp. It is based on the original one as in Figure 4 but two 2×2 max-poolings (with 2×2 stride) are inserted right after the scattering layer-1 and layer-2.

Scattering-naivep

Figure 6: Scattering-naivep. It is based on the original one as in Figure 4 but additional uses 3×3 max-pooling (with 3×3 stride) right after calculating the output of scattering.

Training Set-up

- CPU: Intel(R) Xeon(R) Gold 5210 @ 2.20GHz / GPU: Tesla V100-32GB.
- TensorFlow 1.15.1 / Keras 2.2.4-tf.
- Loss: Categorical cross-entropy / Optimizer: Adam
- Data Augmentations: Horizontal flip & 8 rotations from -20° to 20° .
- Batch Size: 256
- Ratio of the Training Data and the Validation Data: 3 to 1.
- Input Size: 224×224 .

Datasets: Caltech-101 / Caltech-256

Figure 7: Datasets for experiments: (Left) Caltech-101 [5] (Right) Caltech-256 [6]

Figure 8: Performance of scattering based models on Caltech-101 (300 epochs). (Left) Original scattering and scattering-naivep. (Right) Original scattering and scattering-maxp. The learning rate is 10^{-3} during the training session.

Table 1: Classification results on Caltech-101.

Model	# of parameters	Accuracy (%)	Training time (s/epoch)
VGG-16	134,677,286	99.58	566
ResNet34	21,344,166	99.21	221
MobileNet	3,332,742	99.95	419
Scattering	87,592,038	98.49	284
Scattering-naivep	11,596,902	94.54	267
Scattering-maxp	9,944,166	98.59	206

Figure 9: Performance of scattering based models on Caltech-256 (200 epochs). (Left) Original scattering and scattering-naivep. (Right) Original scattering and scattering-maxp. The learning rate is adjusted to be 10^{-3} from the beginning, 10^{-4} after 50 epochs, and 10^{-5} after 75 epochs.

Table 2: Classification results on Caltech-256.

Model	# of parameters	Accuracy (%)	Training time (s/epoch)
VGG-16	135,312,321	98.58	1926
ResNet34	21,423,681	99.97	750
MobileNet	3,491,617	99.99	1433
Scattering	87,631,873	95.06	1006
Scattering-naivep	11,636,737	73.38	982
Scattering-maxp	9,984,001	92.11	651

References

- Y. LECUN, B. BOSER, J. S. DENKER, D. HENDERSON, R. E. HOWARD, W. HUBBARD, AND L. D. JACKEL, *Backpropagation Applied to Handwritten Zip Code Recognition*, Neural Computation, vol.1, pp.541-551, 1989
- [2] S. MALLAT, Group Invariant Scattering, Communications on Pure and Applied Mathematics, vol.65, pp.1331-1398, 2012.
- [3] T. KI AND Y. HUR, Deep scattering network with Max-pooling, preprint, (https://arxiv.org/abs/2101.02321), 2021.
- [4] https://github.com/TaekyungKi/Scattering_maxp.
- [5] L. FEI-FEI, R. FERGUS AND P. PERONA., Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories, in Conference on Computer Vision and Pattern Recognition Workshop, 2004.
- [6] G. GRIFFIN, A. HOLUB, AND P. PERONA., Caltech-256 object category dataset, preprint, 2007.