

Multiscale Point Cloud Geometry Compression

Jiangiang Wang¹, Dandan Ding², Zhu Li³, Zhan Ma¹ ¹Nanjing University, ²Hangzhou Normal Univ., ³Univ. of Missouri at Kansas

Background: Demand for Point Cloud Compression 题 氯 点 火 溴

D Point Cloud (PC)

- **Geometry** (x, y, z)
- Attribute (color, etc)

Emerging Applications

- Immersive Media (AR/VR)
- Autonomous Driving

Demand for Compression

- Huge amount of data
- Unordered and unstructured data

Various PCs

AR\VR

Autonomous Driving

Unstructured Data

Background: PCC Methods

Geometry based PCC (G-PCC)

- Octree Geometry Codec
 - Occupancy Information Coding
 - **Trisoup Geometry Codec**
 - Triangle Mesh Vertices Coding

Octree Decomposition & Occupancy Information Coding

Point Cloud & Mesh Model

□ Video based PCC (V-PCC)

- 3D-2D Projection
- Image/Video Coding
- State-of-the-art Efficiency

Background: Emerging Learning based Methods

□ Voxel based Methods

- $PC \rightarrow Volumetric Model$ •
- 3D CNN based Transform ۲
- **Classification Loss** •

D Point based Methods

- Input Raw Points ۲
- PointNet Structure •
- Distance Loss ٠

PCC based on PointNet AE

D Drawbacks of Existing Learning based Methods

- Voxel based Methods
 - Huge Computation and Memory Cost
- Point based Methods
 - Poor Performance at High Bit Rates

□ How to Improve?

- **Low Complexity Representation and Computation**
 - Sparse Tensor and Sparse Convolution
- **Geometry Details Description and Reconstruction**
 - Hierarchical reconstruction
 - Key points lossless compression

Dense Convolution vs Sparse Convolution

Figure from Choy, C. et al. "4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks." 2019 IEEE/CVF CVPR.

Overview of Multiscale PCGC

D Pipeline

- AutoEncoder (AE) based on Sparse Convolution
- All data is in representation of Sparse Tensor $\{C, F\}$

Sparse Convolution based Multiscale Resampling

□ Network Details

- Basic Unit: Inception Residual Network (IRN)
- **Down-scaling**: Convolution with a stride of two
- **Up-scaling**: Transpose convolution with a stride of two

8

Binary Classification based Hierarchical Reconstruction

D Steps

For each scale:

- Upsampling
 - Generate 8 sub-voxels from 1 voxel
- Feature Augmentation
 - Generate the probabilities of voxel-being-occupied
- Classifying & Pruning
 - Whether generated voxels are occupied or empty

Training Loss

• Multiscale Binary Cross Entropy (**BCE**) Loss

Inferring Method

• Binary Classification based on Adaptive Thresholding

Binary Classification based Reconstruction

Latent Representation Compression

\Box Coordinates C_{y}

- Skeleton Key points
- Lossless Compression using **Octree** Codec
- ≈ 0.025bpp

D Features F_{Y}

- Implicitly Embedded Geometry Features
- Lossy Compression using Arithmetic Encoding (AE)
- Entropy Model based on Factorized Prior
 - Autoregressive Prior and Hyper prior can achieve additional BD-Rate gains

Experimental results

D Experiment Settings

Dataset

- Training: ShapeNet
- Testing: 8iVFB, Owlii dataset, MVUB

D Performance Evaluation

- $\approx 40\%$ BD-Rate gains against V-PCC
- >70% BD-Rate gains against G-PCC
- > **30%** BD-Rate gains against **Learned PCGC**

Anchors

- G-PCC: octree、trisoup
- V-PCC
- Learned-PCGC

Objective Metrics

- Point-to-point Distance (D1)
- Point-to-plane Distance (D2)

BD-Rate Gains against other compression methods using D1 and D2 distortion measurements.

	V-PCC		G-PCC (octree)		G-PCC (trisoup)		Learned-PCGC [4]	
	D1	D2	D1	D2	D1	D2	D1	D2
8iVFB	-39.4	-41.8	-90.8	-84.7	-78.5	-72.8	-36.4	-32.6
Owlii	-38.4	-35.2	-94.8	-90.5	-90.9	-79.1	-50.8	-43.8
MVUB	-60.6	-53.5	-90.4	-83.4	-87.8	-79.7	-46.7	-39.0
Average	-47.7	-45.1	-91.5	-85.4	-84.7	-76.9	-43.4	-37.4

Objective Comparison

2021/2/25

Subjective Comparison

□ Runtime comparison of different methods

	V-PCC	G-PCC (octree)	G-PCC (trisoup)	Learned-PCGC	Ours (Update)
Enc (s)	103.4	1.6	8.1	9.3	1.6 (0.80)
Dec (s)	0.7	0.6	6.6	9.5	5.4 (0.82)

Benchmarked on a workstation with an Intel Core i7-8700 CPU and Geforce GTX 1070 GPU

Complexity comparison of multi-scale and single-scale reconstruction

	Multi-scale reconstruction / Single-scale reconstruction
running memory	1/4
runtime	1/3

Contribution

- Introduce a novel **multiscale PCGC** method based on **sparse convolution**.
- The proposed method is more computationally and memory efficient than the previous Learned PCGC.
- The proposed method achieves > 40% BD-Rate gains over the SOTA V-PCC.

□Future Woks

- Extend this work to include the color attributes and sparse PCs.
- Use quality measures that better match subjective perception.

Thank you for your attention!

More details can be found on <u>https://njuvision.github.io/PCGCv2/</u>