

Department of Communications N Engineering

Blind Speech Separation based on Complex Spherical k-Mode Clustering

Lukas Drude Christoph Boeddeker Reinhold Haeb-Umbach

- Scenario
- Statistical model
- Solve blind source separation for each frequency
 - EM algorithm
 - Spherical k-mode clustering
- Comparison
- Results
- Summary

Scenario

Multiplicative transfer function approximation

Department of Communications <u>NT</u> Engineering

Statistical model

 \boldsymbol{V}

$$\mathbf{Y}_{ft} = \sum_{k=1}^{K} \mathbf{H}_{fk} S_{ftk} + \mathbf{N}_{ft}$$
$$\widetilde{\mathbf{Y}}_{ft} = \frac{\mathbf{Y}_{ft}}{A_{ft}}, \text{ where } A_{ft} = \sqrt{\mathbf{Y}_{ft}^{\mathrm{H}} \mathbf{Y}}$$

- Complex valued vectors
- Unit length
- Decouple transmission path and speech source

- Idea: Observations form clusters on unit-hypersphere
- Use: Complex Watson Mixture Model

Statistical model: Complex Watson Mixture Model

$$p(\widetilde{\mathbf{Y}}_t) = \sum_{k=1}^K \pi_k p(\widetilde{\mathbf{Y}}_t | c_t = k)$$
$$p(\widetilde{\mathbf{Y}}_t | c_t = k) = \frac{1}{c_{\mathrm{W}}(\kappa_k)} \mathrm{e}^{\kappa_k |\widetilde{\mathbf{Y}}_t^{\mathrm{H}} \mathbf{W}_k|^2}$$

 Use EM algorithm to estimate parameters

EM algorithm

- Estimation step:
 - Calculate class affiliation posterior

$$\gamma_{tk} := P(c_t = k | \widetilde{\mathbf{Y}}_t) = \frac{P(c_t = k)p(\widetilde{\mathbf{Y}}_t | c_t = k)}{\sum_{k=1}^{K} P(c_t = k)p(\widetilde{\mathbf{Y}}_t | c_t = k)}$$

• Maximization step:

$$\pi_{k} = N_{k}/T, \text{ where } N_{k} = \sum_{t=1}^{T} \gamma_{tk}$$
$$\mathbf{W}_{k} = \mathcal{P} \left\{ \mathbf{\Phi}_{k} \right\}, \text{ where } \mathbf{\Phi}_{k} = \frac{1}{N_{k}} \sum_{t=1}^{T} \gamma_{tk} \widetilde{\mathbf{Y}}_{t} \widetilde{\mathbf{Y}}_{t}^{\mathrm{H}}$$

 κ_k with implicit equation

7

Quantization of the posteriors

$$\hat{c}_{tk} = \begin{cases} 1, & k = \operatorname*{argmax}_{\tilde{k}} \gamma_{t\tilde{k}}, \\ 0, & \text{else.} \end{cases}$$

• Equal mixture weights, shared concentrations

$$k = \operatorname*{argmax}_{\tilde{k}} \pi_{\tilde{k}} \frac{1}{c_{\mathrm{W}}(\kappa_{\tilde{k}})} \mathrm{e}^{\kappa_{\tilde{k}} |\tilde{\mathbf{Y}}_{t}^{\mathrm{H}} \mathbf{W}_{\tilde{k}}|^{2}}$$
$$= \operatorname*{argmax}_{\tilde{k}} \mathrm{e}^{|\tilde{\mathbf{Y}}_{t}^{\mathrm{H}} \mathbf{W}_{\tilde{k}}|^{2}}$$
$$= \operatorname*{argmax}_{\tilde{k}} |\tilde{\mathbf{Y}}_{t}^{\mathrm{H}} \mathbf{W}_{\tilde{k}}|^{2}$$

Department of Communications <u>NT</u> Engineering

	$\mathbf{\circ}$		 •
••••	Cor	nna	risor
		πρα	

EM	Spherical k-mode	k-means
Evaluate PDF	Squared cosine distance	Euclidean distance
Estimate mode (PCA)	Estimate mode (PCA)	Estimate mean
Estimate concentration		
		Additional normalization

Department of Communications <u>NT</u> Engineering

9

Comparison: Number of iterations

	EM	Spherical k- mode	k-means
Likelihood calculations	TKI	0	0
Eigenvalue decomposition	IK	IK	0
Implicit equations	IK	0	0

Department of Communications <u>NT</u>

10

EM for complex Watson Mixture Model

EM for Gaussian Mixture Model

EM for von-Mises-Fisher Mixture Model

Complex spherical k-mode

k-means

Spherical k-means

Results: Evaluation Setup

The University for the Information Society

- 5 s utterances from TIMIT DB
- Room impulse responses from MIRD DB
- Spherically isotropic noise
- LCMV-Beamformer to separate sources with given masks
 - PSD matrix from mask
 - Relative transfer functions
 using Mode Vectors

Hadad et al. 2014

Results

Department of Communications Engineering

• SNR 15 dB, varying T₆₀

Department of Communications Engineering

• Varying SNR, T₆₀ 360 ms

• IT13: Ito et al. 2013: Permutation-free convolutive blind source separation via full-band clustering based on frequency-independent source presence priors

- Simplified algorithm provides comparable performance.
- Spherical k-mode relates to EM for complex Watson mixture model just as k-means relates to EM for GMMs.
- Spherical k-mode extends the limited tools for complexvalued directional data.

Thank you for listening!