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Scenario

• Multiplicative transfer function approximation
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Statistical model

• Complex valued vectors

• Unit length

• Decouple transmission 

path and speech source
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• Idea: Observations form 
clusters on unit-hypersphere


• Use: Complex Watson Mixture Model
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Statistical model: Complex Watson Mixture Model

• Use EM algorithm 
to estimate parameters
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EM algorithm

• Estimation step:

• Calculate class 

affiliation posterior


• Maximization step:

⇡k = Nk/T, where Nk =

TX

t=1

�tk

Wk = P {�k} , where �k =
1

Nk
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�tk eYt
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t
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PK
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Spherical k-mode clustering

• Quantization of the posteriors


• Equal mixture weights, shared concentrations
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Comparison 8

EM Spherical k-mode k-means

Evaluate PDF Squared cosine 
distance Euclidean distance

Estimate mode 
(PCA)

Estimate mode 
(PCA) Estimate mean

Estimate 
concentration

Additional 
normalization
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Comparison: Number of iterations 9

EM Spherical k-
mode k-means

Likelihood 
calculations TKI 0 0

Eigenvalue 
decomposition IK IK 0

Implicit 
equations IK 0 0
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Comparison: Duality 10

EM for

complex Watson 
Mixture Model

EM for 
Gaussian 

Mixture Model

EM for

von-Mises-Fisher 

Mixture Model

Complex 
spherical
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k-means
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Results: Evaluation Setup

• 5 s utterances from TIMIT DB

• Room impulse responses 

from MIRD DB

• Spherically isotropic noise

• LCMV-Beamformer to separate 

sources with given masks

• PSD matrix from mask

• Relative transfer functions 

using Mode Vectors
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ABSTRACT

In this paper we describe a new multichannel room impulse re-
sponses database. The impulse responses are measured in a room
with configurable reverberation level resulting in three different
acoustic scenarios with reverberation times RT60 equals to 160 ms,
360 ms and 610 ms. The measurements were carried out in recording
sessions of several source positions on a spatial grid (angle range of
�90o to 90o in 15o steps with 1 m and 2 m distance from the mi-
crophone array). The signals in all sessions were captured by three
microphone array configurations. The database is accompanied with
software utilities to easily access and manipulate the data. Besides
the description of the database we demonstrate its use in spatial
source separation task.

Index Terms— Database, room impulse response, microphone
arrays, multi-channel.

1 Introduction
Real-life recordings are important to verify and to validate the per-
formance of algorithms in the field of audio signal processing. Com-
mon real-life scenarios may be characterized by their reverberant
conditions. High level of reverberation can severely degrade speech
quality and should be taken into account while designing both single-
and multi-microphone speech enhancement algorithms.

Assuming a linear and time-invariant propagation of sound from
a fixed source to a receiver, the impulse response (IR) from the sound
source to the microphone entirely describes the system. The spatial
sound, which bears localization and directivity information, can be
synthesized by convolving an anechoic (speech) signal with the IRs.
Accordingly, a database of reverberant room IRs is useful for the
research community.

There are several available databases. In [1] and [2] binaural
room impulse response (BRIR) databases tailored to hearing aid re-
search are presented. A head and torso simulator (HATS) mannikin
is utilized to emulate head and torso shadowing effects in the IRs.
A database of IRs using both omnidirectional microphone and a B-
format microphone was published in [3]. This database includes IRs
in three different rooms, each with a static source position and at
least 130 different receiver positions. In [4] measurements of IRs
of a room with interchangeable panels were published with two dif-
ferent reverberation times. The IRs were recorded by eight micro-
phones at inter-distances of 0.05 m for 4 source microphone dis-

This work was co-funded by the German federal state North Rhine West-
phalia (NRW) and the European Union European (Regional Development
Fund).

tances where the source is positioned in front of the microphone ar-
ray. These databases are freely available and have been instrumental
in testing signal processing algorithms in realistic acoustical scenar-
ios. However, they are somewhat limited with respect to the scope
of the scenarios which can be realized (e.g., a limited number of
sources direction of arrivals (DOAs) with respect to the microphone
array).

The speech & acoustic lab of the Faculty of Engineering at Bar-
Ilan University (BIU) (Fig. 1), is a 6m ⇥ 6m ⇥ 2.4m room with
reverberation time controlled by 60 panels covering the room facets.
This allows to record IRs and test speech processing algorithms in
various conditions with different reverberation times. In this paper
we introduce a database of IRs measured in the lab with eight mi-
crophones array for several source-array positions, several micro-
phone inter-distances in three often encountered reverberant times
(low, medium and high). In addition, an example application is pre-
sented to demonstrate the usability of this database.

The paper is organized as follows. In Sec. 2 the measurement
technique is presented. The database is introduced in Sec. 3. Sec. 4
outlines the availability of the database and describes a new signal
processing utility package for easy data manipulation. In Sec. 5 we
demonstrate the usability of the database by applying a signal sepa-
ration algorithm to two sources both impinging upon an array from
broadside. Finally, conclusions are drawn in Sec. 6.

Fig. 1: Experiment setup in the Speech & Acoustic Lab of the
Faculty of Engineering at Bar-Ilan University.

Hadad et al. 2014

11



NTDepartment of Communications

Engineering

Lukas Drude, Complex k-mode clustering

k-means k-mode EM IT13 IT13+PA

0

10

20

30

SI
R

ga
in

/d
B

160ms 360ms 610ms

Fig. 1: SIR gain for different algorithms and different rever-
beration times (T60) and spherically isotropic noise with an
SNR of 15 dB.

the lowest SIR gain of the tested algorithm and the scatter of
the results was large. For example, the algorithm achieved
a median SIR gain of 13.1 dB in scenarios with a reverbera-
tion time of 360ms and a noise level of 15 dB. We therefore
decided to combine it with an additional permutation align-
ment step to provide a solid baseline for the other compared
algorithms. This additional step increased its performance by
3.6 dB to a solid SIR gain of 16.7 dB.

IT13 with additional permutation alignment, the EM and
the k-mode algorithm achieved comparable SIR gains, as can
be seen from Fig. 1. For example, in scenarios with a re-
verberation time of 360ms and a noise level of 15 dB the
proposed spherical k-mode achieved a median SIR gain of
16.3 dB whereas the EM algorithm achieved 17.0 dB. The
proposed algorithm therefore shows a 0.7 dB gap to the best
performing algorithm.

On the contrary, the k-means with k-means++ initializa-
tion and with additionally phase normalized features achieved
a median SIR gain of 14.4 dB, which is clearly inferior.

Fig. 2 now shows the same algorithms in different noise
conditions. It can be observed that the relative performance
of the algorithms remains the same, irrespective of the input
SNR: k-mode, EM, and IT13+PA achieve similar SIR gains,
while k-means is clearly less effective. Further, not surpris-
ingly, the SIR gain consistently increases with increasing in-
put SNR.

To get a feeling of the computational complexity, Table 1
lists the number of operations for the key algorithmic parts
for each of the investigated methods. The greatest speed-
up of the k-mode algorithm in comparison to the EM algo-
rithm is achieved by the replacement of the likelihood calcu-
lations by squared cosine similarity calculations. This dras-
tically reduces the computation time of the E-step, while the
effort in the M-step is dominated by the eigenvalue decom-
position and thus remains largely unaffected. The k-means
algorithm further drastically reduces the computational effort
of the M-step. Note that in the original EM algorithm the E-
step and the M-step require approximately the same computa-
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Fig. 2: SIR gain for different algorithms and fixed reverber-
ation time of T60 = 360ms and spherically isotropic noise
with varying SNR.

Table 1: Number of selected operations per frequency for
each algorithm: calculated likelihoods, eigenvalue decompo-
sitions, solved implicit equations, permutations. The number
of iterations is I .

k-means k-mode EM IT13 IT13+PA

#likelihoods 0 0 TKI TKI TKI
#eigenv. 0 IK IK IK IK
#implicits 0 0 IK IK IK
#permutes K2 K2 K2 IK! IK!+K2

tion time. It is worth noting, that the k-means uses additional
input normalization and simply replacing the principal com-
ponent analysis in the k-mode algorithm by a mean operation
yields much worse results. We decided against reporting ac-
tual CPU times, since we implemented the different parts in
different languages.

7. CONCLUSIONS AND
RELATION TO PRIOR WORK

We have presented a novel clustering algorithm for obser-
vations on a complex unit hypersphere. It has been used in
a blind source separation scenario and shows comparable or
even superior performance to existing algorithms, while at the
same time being considerably less computationally complex.

The work presented here can be viewed as an extension of
prior work in two respects. First, it is a simplification of our
early proposed EM algorithm for BSS [5] having a much sim-
pler E-step, while achieving similar source separation perfor-
mance. Second, it is shown that it relates to the EM algorithm
for cWMM in the same way as the spherical k-means algo-
rithm to the EM for a mixture of von Mises-Fisher distribu-
tions [13, 12]. We therefore believe that the proposed spher-
ical k-mode algorithm can find applications beyond speech
source separation in fields, where complex-valued directional
data are to be modeled and analyzed, such as in statistical
shape analysis.

• SNR 15 dB, varying T60


• IT13: Ito et al. 2013: Permutation-free convolutive blind source separation via full-band clustering 
based on frequency-independent source presence priors

Results
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Fig. 1: SIR gain for different algorithms and different rever-
beration times (T60) and spherically isotropic noise with an
SNR of 15 dB.

the lowest SIR gain of the tested algorithm and the scatter of
the results was large. For example, the algorithm achieved
a median SIR gain of 13.1 dB in scenarios with a reverbera-
tion time of 360ms and a noise level of 15 dB. We therefore
decided to combine it with an additional permutation align-
ment step to provide a solid baseline for the other compared
algorithms. This additional step increased its performance by
3.6 dB to a solid SIR gain of 16.7 dB.

IT13 with additional permutation alignment, the EM and
the k-mode algorithm achieved comparable SIR gains, as can
be seen from Fig. 1. For example, in scenarios with a re-
verberation time of 360ms and a noise level of 15 dB the
proposed spherical k-mode achieved a median SIR gain of
16.3 dB whereas the EM algorithm achieved 17.0 dB. The
proposed algorithm therefore shows a 0.7 dB gap to the best
performing algorithm.

On the contrary, the k-means with k-means++ initializa-
tion and with additionally phase normalized features achieved
a median SIR gain of 14.4 dB, which is clearly inferior.

Fig. 2 now shows the same algorithms in different noise
conditions. It can be observed that the relative performance
of the algorithms remains the same, irrespective of the input
SNR: k-mode, EM, and IT13+PA achieve similar SIR gains,
while k-means is clearly less effective. Further, not surpris-
ingly, the SIR gain consistently increases with increasing in-
put SNR.

To get a feeling of the computational complexity, Table 1
lists the number of operations for the key algorithmic parts
for each of the investigated methods. The greatest speed-
up of the k-mode algorithm in comparison to the EM algo-
rithm is achieved by the replacement of the likelihood calcu-
lations by squared cosine similarity calculations. This dras-
tically reduces the computation time of the E-step, while the
effort in the M-step is dominated by the eigenvalue decom-
position and thus remains largely unaffected. The k-means
algorithm further drastically reduces the computational effort
of the M-step. Note that in the original EM algorithm the E-
step and the M-step require approximately the same computa-
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Fig. 2: SIR gain for different algorithms and fixed reverber-
ation time of T60 = 360ms and spherically isotropic noise
with varying SNR.

Table 1: Number of selected operations per frequency for
each algorithm: calculated likelihoods, eigenvalue decompo-
sitions, solved implicit equations, permutations. The number
of iterations is I .

k-means k-mode EM IT13 IT13+PA

#likelihoods 0 0 TKI TKI TKI
#eigenv. 0 IK IK IK IK
#implicits 0 0 IK IK IK
#permutes K2 K2 K2 IK! IK!+K2

tion time. It is worth noting, that the k-means uses additional
input normalization and simply replacing the principal com-
ponent analysis in the k-mode algorithm by a mean operation
yields much worse results. We decided against reporting ac-
tual CPU times, since we implemented the different parts in
different languages.

7. CONCLUSIONS AND
RELATION TO PRIOR WORK

We have presented a novel clustering algorithm for obser-
vations on a complex unit hypersphere. It has been used in
a blind source separation scenario and shows comparable or
even superior performance to existing algorithms, while at the
same time being considerably less computationally complex.

The work presented here can be viewed as an extension of
prior work in two respects. First, it is a simplification of our
early proposed EM algorithm for BSS [5] having a much sim-
pler E-step, while achieving similar source separation perfor-
mance. Second, it is shown that it relates to the EM algorithm
for cWMM in the same way as the spherical k-means algo-
rithm to the EM for a mixture of von Mises-Fisher distribu-
tions [13, 12]. We therefore believe that the proposed spher-
ical k-mode algorithm can find applications beyond speech
source separation in fields, where complex-valued directional
data are to be modeled and analyzed, such as in statistical
shape analysis.
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Fig. 1: SIR gain for different algorithms and different rever-
beration times (T60) and spherically isotropic noise with an
SNR of 15 dB.

the lowest SIR gain of the tested algorithm and the scatter of
the results was large. For example, the algorithm achieved
a median SIR gain of 13.1 dB in scenarios with a reverbera-
tion time of 360ms and a noise level of 15 dB. We therefore
decided to combine it with an additional permutation align-
ment step to provide a solid baseline for the other compared
algorithms. This additional step increased its performance by
3.6 dB to a solid SIR gain of 16.7 dB.

IT13 with additional permutation alignment, the EM and
the k-mode algorithm achieved comparable SIR gains, as can
be seen from Fig. 1. For example, in scenarios with a re-
verberation time of 360ms and a noise level of 15 dB the
proposed spherical k-mode achieved a median SIR gain of
16.3 dB whereas the EM algorithm achieved 17.0 dB. The
proposed algorithm therefore shows a 0.7 dB gap to the best
performing algorithm.

On the contrary, the k-means with k-means++ initializa-
tion and with additionally phase normalized features achieved
a median SIR gain of 14.4 dB, which is clearly inferior.

Fig. 2 now shows the same algorithms in different noise
conditions. It can be observed that the relative performance
of the algorithms remains the same, irrespective of the input
SNR: k-mode, EM, and IT13+PA achieve similar SIR gains,
while k-means is clearly less effective. Further, not surpris-
ingly, the SIR gain consistently increases with increasing in-
put SNR.

To get a feeling of the computational complexity, Table 1
lists the number of operations for the key algorithmic parts
for each of the investigated methods. The greatest speed-
up of the k-mode algorithm in comparison to the EM algo-
rithm is achieved by the replacement of the likelihood calcu-
lations by squared cosine similarity calculations. This dras-
tically reduces the computation time of the E-step, while the
effort in the M-step is dominated by the eigenvalue decom-
position and thus remains largely unaffected. The k-means
algorithm further drastically reduces the computational effort
of the M-step. Note that in the original EM algorithm the E-
step and the M-step require approximately the same computa-
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ation time of T60 = 360ms and spherically isotropic noise
with varying SNR.

Table 1: Number of selected operations per frequency for
each algorithm: calculated likelihoods, eigenvalue decompo-
sitions, solved implicit equations, permutations. The number
of iterations is I .

k-means k-mode EM IT13 IT13+PA

#likelihoods 0 0 TKI TKI TKI
#eigenv. 0 IK IK IK IK
#implicits 0 0 IK IK IK
#permutes K2 K2 K2 IK! IK!+K2

tion time. It is worth noting, that the k-means uses additional
input normalization and simply replacing the principal com-
ponent analysis in the k-mode algorithm by a mean operation
yields much worse results. We decided against reporting ac-
tual CPU times, since we implemented the different parts in
different languages.

7. CONCLUSIONS AND
RELATION TO PRIOR WORK

We have presented a novel clustering algorithm for obser-
vations on a complex unit hypersphere. It has been used in
a blind source separation scenario and shows comparable or
even superior performance to existing algorithms, while at the
same time being considerably less computationally complex.

The work presented here can be viewed as an extension of
prior work in two respects. First, it is a simplification of our
early proposed EM algorithm for BSS [5] having a much sim-
pler E-step, while achieving similar source separation perfor-
mance. Second, it is shown that it relates to the EM algorithm
for cWMM in the same way as the spherical k-means algo-
rithm to the EM for a mixture of von Mises-Fisher distribu-
tions [13, 12]. We therefore believe that the proposed spher-
ical k-mode algorithm can find applications beyond speech
source separation in fields, where complex-valued directional
data are to be modeled and analyzed, such as in statistical
shape analysis.
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Fig. 1: SIR gain for different algorithms and different rever-
beration times (T60) and spherically isotropic noise with an
SNR of 15 dB.

the lowest SIR gain of the tested algorithm and the scatter of
the results was large. For example, the algorithm achieved
a median SIR gain of 13.1 dB in scenarios with a reverbera-
tion time of 360ms and a noise level of 15 dB. We therefore
decided to combine it with an additional permutation align-
ment step to provide a solid baseline for the other compared
algorithms. This additional step increased its performance by
3.6 dB to a solid SIR gain of 16.7 dB.

IT13 with additional permutation alignment, the EM and
the k-mode algorithm achieved comparable SIR gains, as can
be seen from Fig. 1. For example, in scenarios with a re-
verberation time of 360ms and a noise level of 15 dB the
proposed spherical k-mode achieved a median SIR gain of
16.3 dB whereas the EM algorithm achieved 17.0 dB. The
proposed algorithm therefore shows a 0.7 dB gap to the best
performing algorithm.

On the contrary, the k-means with k-means++ initializa-
tion and with additionally phase normalized features achieved
a median SIR gain of 14.4 dB, which is clearly inferior.

Fig. 2 now shows the same algorithms in different noise
conditions. It can be observed that the relative performance
of the algorithms remains the same, irrespective of the input
SNR: k-mode, EM, and IT13+PA achieve similar SIR gains,
while k-means is clearly less effective. Further, not surpris-
ingly, the SIR gain consistently increases with increasing in-
put SNR.

To get a feeling of the computational complexity, Table 1
lists the number of operations for the key algorithmic parts
for each of the investigated methods. The greatest speed-
up of the k-mode algorithm in comparison to the EM algo-
rithm is achieved by the replacement of the likelihood calcu-
lations by squared cosine similarity calculations. This dras-
tically reduces the computation time of the E-step, while the
effort in the M-step is dominated by the eigenvalue decom-
position and thus remains largely unaffected. The k-means
algorithm further drastically reduces the computational effort
of the M-step. Note that in the original EM algorithm the E-
step and the M-step require approximately the same computa-
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Fig. 2: SIR gain for different algorithms and fixed reverber-
ation time of T60 = 360ms and spherically isotropic noise
with varying SNR.

Table 1: Number of selected operations per frequency for
each algorithm: calculated likelihoods, eigenvalue decompo-
sitions, solved implicit equations, permutations. The number
of iterations is I .

k-means k-mode EM IT13 IT13+PA

#likelihoods 0 0 TKI TKI TKI
#eigenv. 0 IK IK IK IK
#implicits 0 0 IK IK IK
#permutes K2 K2 K2 IK! IK!+K2

tion time. It is worth noting, that the k-means uses additional
input normalization and simply replacing the principal com-
ponent analysis in the k-mode algorithm by a mean operation
yields much worse results. We decided against reporting ac-
tual CPU times, since we implemented the different parts in
different languages.

7. CONCLUSIONS AND
RELATION TO PRIOR WORK

We have presented a novel clustering algorithm for obser-
vations on a complex unit hypersphere. It has been used in
a blind source separation scenario and shows comparable or
even superior performance to existing algorithms, while at the
same time being considerably less computationally complex.

The work presented here can be viewed as an extension of
prior work in two respects. First, it is a simplification of our
early proposed EM algorithm for BSS [5] having a much sim-
pler E-step, while achieving similar source separation perfor-
mance. Second, it is shown that it relates to the EM algorithm
for cWMM in the same way as the spherical k-means algo-
rithm to the EM for a mixture of von Mises-Fisher distribu-
tions [13, 12]. We therefore believe that the proposed spher-
ical k-mode algorithm can find applications beyond speech
source separation in fields, where complex-valued directional
data are to be modeled and analyzed, such as in statistical
shape analysis.
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• Varying SNR, T60 360 ms


• IT13: Ito et al. 2013: Permutation-free convolutive blind source separation via full-band clustering 
based on frequency-independent source presence priors

Results
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Fig. 1: SIR gain for different algorithms and different rever-
beration times (T60) and spherically isotropic noise with an
SNR of 15 dB.

the lowest SIR gain of the tested algorithm and the scatter of
the results was large. For example, the algorithm achieved
a median SIR gain of 13.1 dB in scenarios with a reverbera-
tion time of 360ms and a noise level of 15 dB. We therefore
decided to combine it with an additional permutation align-
ment step to provide a solid baseline for the other compared
algorithms. This additional step increased its performance by
3.6 dB to a solid SIR gain of 16.7 dB.

IT13 with additional permutation alignment, the EM and
the k-mode algorithm achieved comparable SIR gains, as can
be seen from Fig. 1. For example, in scenarios with a re-
verberation time of 360ms and a noise level of 15 dB the
proposed spherical k-mode achieved a median SIR gain of
16.3 dB whereas the EM algorithm achieved 17.0 dB. The
proposed algorithm therefore shows a 0.7 dB gap to the best
performing algorithm.

On the contrary, the k-means with k-means++ initializa-
tion and with additionally phase normalized features achieved
a median SIR gain of 14.4 dB, which is clearly inferior.

Fig. 2 now shows the same algorithms in different noise
conditions. It can be observed that the relative performance
of the algorithms remains the same, irrespective of the input
SNR: k-mode, EM, and IT13+PA achieve similar SIR gains,
while k-means is clearly less effective. Further, not surpris-
ingly, the SIR gain consistently increases with increasing in-
put SNR.

To get a feeling of the computational complexity, Table 1
lists the number of operations for the key algorithmic parts
for each of the investigated methods. The greatest speed-
up of the k-mode algorithm in comparison to the EM algo-
rithm is achieved by the replacement of the likelihood calcu-
lations by squared cosine similarity calculations. This dras-
tically reduces the computation time of the E-step, while the
effort in the M-step is dominated by the eigenvalue decom-
position and thus remains largely unaffected. The k-means
algorithm further drastically reduces the computational effort
of the M-step. Note that in the original EM algorithm the E-
step and the M-step require approximately the same computa-
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Fig. 2: SIR gain for different algorithms and fixed reverber-
ation time of T60 = 360ms and spherically isotropic noise
with varying SNR.

Table 1: Number of selected operations per frequency for
each algorithm: calculated likelihoods, eigenvalue decompo-
sitions, solved implicit equations, permutations. The number
of iterations is I .

k-means k-mode EM IT13 IT13+PA

#likelihoods 0 0 TKI TKI TKI
#eigenv. 0 IK IK IK IK
#implicits 0 0 IK IK IK
#permutes K2 K2 K2 IK! IK!+K2

tion time. It is worth noting, that the k-means uses additional
input normalization and simply replacing the principal com-
ponent analysis in the k-mode algorithm by a mean operation
yields much worse results. We decided against reporting ac-
tual CPU times, since we implemented the different parts in
different languages.

7. CONCLUSIONS AND
RELATION TO PRIOR WORK

We have presented a novel clustering algorithm for obser-
vations on a complex unit hypersphere. It has been used in
a blind source separation scenario and shows comparable or
even superior performance to existing algorithms, while at the
same time being considerably less computationally complex.

The work presented here can be viewed as an extension of
prior work in two respects. First, it is a simplification of our
early proposed EM algorithm for BSS [5] having a much sim-
pler E-step, while achieving similar source separation perfor-
mance. Second, it is shown that it relates to the EM algorithm
for cWMM in the same way as the spherical k-means algo-
rithm to the EM for a mixture of von Mises-Fisher distribu-
tions [13, 12]. We therefore believe that the proposed spher-
ical k-mode algorithm can find applications beyond speech
source separation in fields, where complex-valued directional
data are to be modeled and analyzed, such as in statistical
shape analysis.
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Fig. 1: SIR gain for different algorithms and different rever-
beration times (T60) and spherically isotropic noise with an
SNR of 15 dB.

the lowest SIR gain of the tested algorithm and the scatter of
the results was large. For example, the algorithm achieved
a median SIR gain of 13.1 dB in scenarios with a reverbera-
tion time of 360ms and a noise level of 15 dB. We therefore
decided to combine it with an additional permutation align-
ment step to provide a solid baseline for the other compared
algorithms. This additional step increased its performance by
3.6 dB to a solid SIR gain of 16.7 dB.

IT13 with additional permutation alignment, the EM and
the k-mode algorithm achieved comparable SIR gains, as can
be seen from Fig. 1. For example, in scenarios with a re-
verberation time of 360ms and a noise level of 15 dB the
proposed spherical k-mode achieved a median SIR gain of
16.3 dB whereas the EM algorithm achieved 17.0 dB. The
proposed algorithm therefore shows a 0.7 dB gap to the best
performing algorithm.

On the contrary, the k-means with k-means++ initializa-
tion and with additionally phase normalized features achieved
a median SIR gain of 14.4 dB, which is clearly inferior.

Fig. 2 now shows the same algorithms in different noise
conditions. It can be observed that the relative performance
of the algorithms remains the same, irrespective of the input
SNR: k-mode, EM, and IT13+PA achieve similar SIR gains,
while k-means is clearly less effective. Further, not surpris-
ingly, the SIR gain consistently increases with increasing in-
put SNR.

To get a feeling of the computational complexity, Table 1
lists the number of operations for the key algorithmic parts
for each of the investigated methods. The greatest speed-
up of the k-mode algorithm in comparison to the EM algo-
rithm is achieved by the replacement of the likelihood calcu-
lations by squared cosine similarity calculations. This dras-
tically reduces the computation time of the E-step, while the
effort in the M-step is dominated by the eigenvalue decom-
position and thus remains largely unaffected. The k-means
algorithm further drastically reduces the computational effort
of the M-step. Note that in the original EM algorithm the E-
step and the M-step require approximately the same computa-

k-means k-mode EM IT13 IT13+PA

0

10

20

30

SI
R

ga
in

/d
B

5 dB 10 dB 15 dB

Fig. 2: SIR gain for different algorithms and fixed reverber-
ation time of T60 = 360ms and spherically isotropic noise
with varying SNR.

Table 1: Number of selected operations per frequency for
each algorithm: calculated likelihoods, eigenvalue decompo-
sitions, solved implicit equations, permutations. The number
of iterations is I .

k-means k-mode EM IT13 IT13+PA

#likelihoods 0 0 TKI TKI TKI
#eigenv. 0 IK IK IK IK
#implicits 0 0 IK IK IK
#permutes K2 K2 K2 IK! IK!+K2

tion time. It is worth noting, that the k-means uses additional
input normalization and simply replacing the principal com-
ponent analysis in the k-mode algorithm by a mean operation
yields much worse results. We decided against reporting ac-
tual CPU times, since we implemented the different parts in
different languages.
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vations on a complex unit hypersphere. It has been used in
a blind source separation scenario and shows comparable or
even superior performance to existing algorithms, while at the
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prior work in two respects. First, it is a simplification of our
early proposed EM algorithm for BSS [5] having a much sim-
pler E-step, while achieving similar source separation perfor-
mance. Second, it is shown that it relates to the EM algorithm
for cWMM in the same way as the spherical k-means algo-
rithm to the EM for a mixture of von Mises-Fisher distribu-
tions [13, 12]. We therefore believe that the proposed spher-
ical k-mode algorithm can find applications beyond speech
source separation in fields, where complex-valued directional
data are to be modeled and analyzed, such as in statistical
shape analysis.
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the lowest SIR gain of the tested algorithm and the scatter of
the results was large. For example, the algorithm achieved
a median SIR gain of 13.1 dB in scenarios with a reverbera-
tion time of 360ms and a noise level of 15 dB. We therefore
decided to combine it with an additional permutation align-
ment step to provide a solid baseline for the other compared
algorithms. This additional step increased its performance by
3.6 dB to a solid SIR gain of 16.7 dB.

IT13 with additional permutation alignment, the EM and
the k-mode algorithm achieved comparable SIR gains, as can
be seen from Fig. 1. For example, in scenarios with a re-
verberation time of 360ms and a noise level of 15 dB the
proposed spherical k-mode achieved a median SIR gain of
16.3 dB whereas the EM algorithm achieved 17.0 dB. The
proposed algorithm therefore shows a 0.7 dB gap to the best
performing algorithm.

On the contrary, the k-means with k-means++ initializa-
tion and with additionally phase normalized features achieved
a median SIR gain of 14.4 dB, which is clearly inferior.

Fig. 2 now shows the same algorithms in different noise
conditions. It can be observed that the relative performance
of the algorithms remains the same, irrespective of the input
SNR: k-mode, EM, and IT13+PA achieve similar SIR gains,
while k-means is clearly less effective. Further, not surpris-
ingly, the SIR gain consistently increases with increasing in-
put SNR.

To get a feeling of the computational complexity, Table 1
lists the number of operations for the key algorithmic parts
for each of the investigated methods. The greatest speed-
up of the k-mode algorithm in comparison to the EM algo-
rithm is achieved by the replacement of the likelihood calcu-
lations by squared cosine similarity calculations. This dras-
tically reduces the computation time of the E-step, while the
effort in the M-step is dominated by the eigenvalue decom-
position and thus remains largely unaffected. The k-means
algorithm further drastically reduces the computational effort
of the M-step. Note that in the original EM algorithm the E-
step and the M-step require approximately the same computa-
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Table 1: Number of selected operations per frequency for
each algorithm: calculated likelihoods, eigenvalue decompo-
sitions, solved implicit equations, permutations. The number
of iterations is I .

k-means k-mode EM IT13 IT13+PA

#likelihoods 0 0 TKI TKI TKI
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tion time. It is worth noting, that the k-means uses additional
input normalization and simply replacing the principal com-
ponent analysis in the k-mode algorithm by a mean operation
yields much worse results. We decided against reporting ac-
tual CPU times, since we implemented the different parts in
different languages.

7. CONCLUSIONS AND
RELATION TO PRIOR WORK

We have presented a novel clustering algorithm for obser-
vations on a complex unit hypersphere. It has been used in
a blind source separation scenario and shows comparable or
even superior performance to existing algorithms, while at the
same time being considerably less computationally complex.

The work presented here can be viewed as an extension of
prior work in two respects. First, it is a simplification of our
early proposed EM algorithm for BSS [5] having a much sim-
pler E-step, while achieving similar source separation perfor-
mance. Second, it is shown that it relates to the EM algorithm
for cWMM in the same way as the spherical k-means algo-
rithm to the EM for a mixture of von Mises-Fisher distribu-
tions [13, 12]. We therefore believe that the proposed spher-
ical k-mode algorithm can find applications beyond speech
source separation in fields, where complex-valued directional
data are to be modeled and analyzed, such as in statistical
shape analysis.
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beration times (T60) and spherically isotropic noise with an
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the lowest SIR gain of the tested algorithm and the scatter of
the results was large. For example, the algorithm achieved
a median SIR gain of 13.1 dB in scenarios with a reverbera-
tion time of 360ms and a noise level of 15 dB. We therefore
decided to combine it with an additional permutation align-
ment step to provide a solid baseline for the other compared
algorithms. This additional step increased its performance by
3.6 dB to a solid SIR gain of 16.7 dB.

IT13 with additional permutation alignment, the EM and
the k-mode algorithm achieved comparable SIR gains, as can
be seen from Fig. 1. For example, in scenarios with a re-
verberation time of 360ms and a noise level of 15 dB the
proposed spherical k-mode achieved a median SIR gain of
16.3 dB whereas the EM algorithm achieved 17.0 dB. The
proposed algorithm therefore shows a 0.7 dB gap to the best
performing algorithm.

On the contrary, the k-means with k-means++ initializa-
tion and with additionally phase normalized features achieved
a median SIR gain of 14.4 dB, which is clearly inferior.

Fig. 2 now shows the same algorithms in different noise
conditions. It can be observed that the relative performance
of the algorithms remains the same, irrespective of the input
SNR: k-mode, EM, and IT13+PA achieve similar SIR gains,
while k-means is clearly less effective. Further, not surpris-
ingly, the SIR gain consistently increases with increasing in-
put SNR.

To get a feeling of the computational complexity, Table 1
lists the number of operations for the key algorithmic parts
for each of the investigated methods. The greatest speed-
up of the k-mode algorithm in comparison to the EM algo-
rithm is achieved by the replacement of the likelihood calcu-
lations by squared cosine similarity calculations. This dras-
tically reduces the computation time of the E-step, while the
effort in the M-step is dominated by the eigenvalue decom-
position and thus remains largely unaffected. The k-means
algorithm further drastically reduces the computational effort
of the M-step. Note that in the original EM algorithm the E-
step and the M-step require approximately the same computa-
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Table 1: Number of selected operations per frequency for
each algorithm: calculated likelihoods, eigenvalue decompo-
sitions, solved implicit equations, permutations. The number
of iterations is I .

k-means k-mode EM IT13 IT13+PA

#likelihoods 0 0 TKI TKI TKI
#eigenv. 0 IK IK IK IK
#implicits 0 0 IK IK IK
#permutes K2 K2 K2 IK! IK!+K2

tion time. It is worth noting, that the k-means uses additional
input normalization and simply replacing the principal com-
ponent analysis in the k-mode algorithm by a mean operation
yields much worse results. We decided against reporting ac-
tual CPU times, since we implemented the different parts in
different languages.

7. CONCLUSIONS AND
RELATION TO PRIOR WORK

We have presented a novel clustering algorithm for obser-
vations on a complex unit hypersphere. It has been used in
a blind source separation scenario and shows comparable or
even superior performance to existing algorithms, while at the
same time being considerably less computationally complex.

The work presented here can be viewed as an extension of
prior work in two respects. First, it is a simplification of our
early proposed EM algorithm for BSS [5] having a much sim-
pler E-step, while achieving similar source separation perfor-
mance. Second, it is shown that it relates to the EM algorithm
for cWMM in the same way as the spherical k-means algo-
rithm to the EM for a mixture of von Mises-Fisher distribu-
tions [13, 12]. We therefore believe that the proposed spher-
ical k-mode algorithm can find applications beyond speech
source separation in fields, where complex-valued directional
data are to be modeled and analyzed, such as in statistical
shape analysis.
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Summary

• Simplified algorithm provides comparable performance.

• Spherical k-mode relates to EM for complex Watson 

mixture model just as k-means relates to EM for GMMs.

• Spherical k-mode extends the limited tools for complex-

valued directional data.
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