Low Complexity Video Compression for Fixed Focus Cameras

Kumar Manas, Mohit Jindal, and Preety Singh The LNM Institute of Information Technology Jaipur, Rajasthan, 302031, India {kumarmanas.y17,mohitjindal.y17,preety}@lnmiit.ac.in

Motivation

- Every new version of video coding algorithms uses more advanced algorithms to increase compression efficiency. Hence computational complexity increases too.
- Due to the increasing cost of the CCTV cameras organisations are reluctant to install them in good numbers.

Terminology

- S-frame(Stable Frame) Every 120th frame is an S-Frame. Encoded without prediction. Only Integer Transform and entropy encoding are performed for these frames. The interval of 120 was chosen after several experiments.
- 2. **D-frame**(Difference frame) Every 10th frame is a D-Frame. It is not predicted, just a difference between this frame and the most recent S-Frame is encoded to compress the frame.
- 3. **P-frame**(Predicted frame) These frames occur between two consecutive D-Frames. These are stored relative to the frame just preceding it.

Proposed Methodology

- In the case of fixed focus cameras, difference in frames is only due to motion of objects in the frame.
- Exploiting this property, we have introduced two new modules in addition to the existing modules of the current coding standards. The two modules are:
 - a. Image Difference Module (IDM)
 - b. Macroblock Division Module (MDM)
- Also, we have introduced some changes in the Motion Estimation Module (MEM)

Structure of Encoder

Image Difference Module(IDM)

• The module performs pixel-to-pixel comparison of current frame and reference frame (in all three channels Y, Cb and Cr), marking the changed positions with value '1', else value '0', in a difference matrix M1.

2 consequent frames

Slight movement in the yellow bus and blue car

Output of Image Difference Module

MacroBlock Division Module(MDM)

- Values from M1 are used to predict the macroblock mode for each 16X16 macroblock in the frame.
- Every macroblock in M1 is visited with a 4X4 window.
- Depending on these values, that particular 4X4 block gets assigned a value `0' or `1' in an intermediate matrix M2.
- Every 2X2 block of M2 is visited and sum of all its cells is stored in a variable **Total** and a new matrix M3 is created.
- Decision to merge sub-blocks is done on basis of **Total** and M3 values.

We have come up with some codewords which will help us in encoding the information of macroblocks and their sub blocks in lesser space

Codeword	Block Dimensions	Blocks count
0	16x16	1
1	8x16	2
2	16x8	2
3	8x8	4
4	4x8	2
5	8x4 2	
6	4x4	4

Fig: Codewords

Table: Code-words for different block

Let's take a 16x16 Macroblock from the Image Difference Matrix, to understand better

Fig: A 16x16 macroblock of Image Difference Matrix M1

Fig: Matrix M2 (Left)

Matrix M3 (Center)

and Macroblock Modes (Right)

Motion Estimation Module(MEM)

- It uses the macroblock modes list obtained from MDM and determines motion vectors for all macroblocks.
- If there are no changes in that block, (0,0) is directly assigned as its motion vector.
- Else, Three Step Search Algorithm (TSS) is applied for block matching to determine motion vectors for that block.

How we reduced time complexity!

- In standard video codecs, macroblock division is performed by finding motion vectors for all possible combinations of macroblock modes and the mode with least error is used.
- The proposed algorithm determines macroblock modes using image difference technique without computing motion vectors for every possible combination of macroblock modes.

Results

Dataset used

- VIRAT video Dataset
- 1280 x 720
- 30 frames per second
- Videos from fixed focus cameras at parking lots, restaurants, institution campus, etc.
- Average compression 90.19 %

Compression Results

Video Sample	Raw Video Size [MB]	Compressed Video Size [MB]	Compression [%]
1	48918	4158.03	91.5
2	7595.5	873.97	88.34
3	29666.4	3079.37	89.62
4	33927	2123.83	93.74
5	43395	7281.68	83.22
6	54835.5	2856.93	94.79
7	39844.5	3446.55	91.35
8	45130.8	4995.98	88.93

Computational Complexity

Computational complexity of determining macroblock mode in the present algorithms is:

$$C_{standard} = N \times \sum_{P} \sum_{SB} \{ (dimension \ of \ SB) \times N_{ME} \}$$
$$= N \times 256 \times N_{PC} \times N_{ME}$$

where, N = number of macroblocks per frame

P = Possible combination

SB =Sub-block

 N_{ME} = number of iterations required for motion estimation of a sub-block N_{PC} = number of possible combinations of macroblock modes for a 16 × 16 macroblock

The average value of N_{ME} is 25 and value of N_{PC} is 259 [5]. Hence, the average value of $C_{standard} = 256 \times N \times 259 \times 25 = 1657600N$.

Computational complexity of determining macroblock mode in the proposed method,

 $C_{proposed} = (dimensions of a macroblock) \times (dimensions of matrix M2) \times N$ $= (16 \times 16) \times (4 \times 4) \times N = 4096N$

where, N = number of macroblocks per frame

Ratio of computational complexities
$$=\frac{C_{standard}}{C_{proposed}}=\frac{1657600}{4096}=405:1$$
 (approx.)

Conclusion

The use of **Image Difference Module** and **Macroblock division module** in the proposed framework greatly reduces the complexity of the process of **determining appropriate macroblock modes** for each 16x16 macroblock in every frame.

From experimental results we conclude:

- 1. Reduction in computational complexity by a factor of approx. 400 times
- 2. Compression levels of 90% on average

Literature Survey

- T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, "Overview of the H.264/AVC video coding standard," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560-576, July 2003, doi: 10.1109/TCSVT.2003.815165.
- VCodex H.264 documentation <u>https://www.vcodex.com/h264-resources/</u>.
- Ze-Nian Li, Mark S. Drew, Jiangchuan Liu "Fundamentals of Multimedia".
- Iain E. G. Richardson The Robert Gordon University, Aberdeen, UK "H.264 and MPEG-4 Video Compression Video Coding for Next-generation Multimedia".
- L.C.Manikandan, Dr.R.K.Selvakumar, IEEE Senior Member "A Study on Block Matching Algorithms for Motion Estimation in Video Coding" International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014.

Literature Survey

- K. Panusopone and K. R. Rao, "Efficient motion estimation for block based video compression," 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, Munich, 1997, pp. 2677-2680 vol.4, doi: 10.1109/ICASSP.1997.595340.
- D. Marpe, H. Schwarz, and T. Wiegand, "Context-adaptive binary arithmetic coding in the H.264/AVC video compression standard," IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp. 620–636, July 2003.
- W. Hassen and H. Amiri, "Block Matching Algorithms for motion estimation," 2013 7th IEEE International Conference on e-Learning in Industrial Electronics (ICELIE), Vienna, 2013, pp. 136-139, doi: 10.1109/ICELIE.2013.6701287.
- L. Czuni, G. Csaszar and A. Licsar, "Estimating the Optimal Quantization Parameter in H.264," 18th International Conference on Pattern Recognition (ICPR'06), Hong Kong, 2006, pp. 330-333, doi: 10.1109/ICPR.2006.502.

Thank You