

Quad-tree Based Sample Refinement Filter for Video Coding

Yunrui Jian¹, Jiaqi Zhang², Chuanmin Jia¹, Suhong Wang¹, Shanshe Wang¹ and Siwei Ma¹

¹Peking University

²University of Chinese Academy of Science

Feb, 2021

- ☐ Motivations
- ☐ Quad-tree Sample Refinement Filter (QSRF)
- ☐ The performance of QSRF

- ☐ Motivations
- ☐ Quad-tree Sample Refinement Filter (QSRF)
- ☐ The performance of QSRF

- ☐ The existing in-loop filter schemes: SAO and ALF are performed with a fixed filtering size.
 - SAO: filter unit is the Largest Coding Unit (LCU)
 - ALF: One picture is divided into 16 regions, one region is regarded as one filter unit.
 - □ lack of flexibility to deal with various contents
- ☐ The high filtering correlation existing at different in-loop filter stages is rarely considered.

- The high filtering correlation existing at different in-loop filter stages is rarely considered.
 - confidence level p

$$C_1 = \{(i, j) \in I : Y(i, j) > X(i, j)\}$$

 $C_2 = \{(i, j) \in I : Y(i, j) \leq X(i, j)\}$
 $C_3 = \{(i, j) \in I : Y(i, j) \leq X(i, j)\}$
 $C_4 = \{(i, j) \in I : Y(i, j) \leq X(i, j)\}$
 $C_5 = \{(i, j) \in I : Y(i, j) \leq X(i, j)\}$
 $C_7 = \{(i, j) \in I : Y(i, j) \leq X(i, j)\}$
 $C_7 = \{(i, j) \in I : Y(i, j) \leq X(i, j)\}$
The whole samples can be divided into 2

I: the location of all the samples.

X: the original samples.

Y: the reconstructed samples.

classes: \tilde{C}_1 and \tilde{C}_2

$$p = \frac{\Lambda_{1} + \Lambda_{2} + ... + \Lambda_{L-1} + \Lambda_{L}}{|C_{1} \bigcup C_{2} \bigcup ... \bigcup C_{L-1} \bigcup_{L-1}|}$$

$$\Lambda_{k} = \begin{cases} \begin{vmatrix} C_{k} \cap \tilde{C}_{1} \\ C_{k} \cap \tilde{C}_{1} \end{vmatrix}, \begin{vmatrix} C_{k} \cap \tilde{C}_{1} \\ C_{k} \cap \tilde{C}_{2} \end{vmatrix} > \begin{vmatrix} C_{k} \cap \tilde{C}_{1} \\ C_{k} \cap \tilde{C}_{2} \end{vmatrix} & \text{equals to the number of samples both in } C_{k} \text{ and } \tilde{C}_{1} \\ \begin{vmatrix} C_{k} \cap \tilde{C}_{2} \\ C_{k} \cap \tilde{C}_{2} \end{vmatrix}, \begin{vmatrix} C_{k} \cap \tilde{C}_{2} \\ C_{k} \cap \tilde{C}_{2} \end{vmatrix}, k \in [1, L] \end{cases}$$

 \square The impact of the confidence level p on the PSNR

It can be seen that the PSNR increases with the value of the confidence level increases

☐ Sample classification

$$s_{k}(i, j) = sign(P_{k}(i, j) - P_{k+1}(i, j)), \quad k=1, 2, 3$$

$$sign(x) = \begin{cases} 1, x < 0 \\ 0, x \ge 0 \end{cases}$$

$$s_* = 4 * s_1(i, j) + 2 * s_2(i, j) + s_3(i, j)$$

For S_1 , S_2 and S_3 , the whole samples are classified into 2 classes. For S_* , the whole samples are classified into 8 classes.

Fig.1 Encoder block diagram

- ☐ The confidence level result
 - $p_{dbf}, p_{sao}, p_{alf}, p_*$: the confidence level of S_1, S_2, S_3 and S_*

 p_* has the highest confidence value, which means that the classification method S_* has great potential to bring some coding gain.

- ☐ Motivations
- ☐ Quad-tree Sample Refinement Filter (QSRF)
- ☐ The performance of QSRF

Quad-tree Sample Refinement Filter (QSRF)

☐ The whole structure of QSRF

QSRF structure

Quad-tree Sample Refinement Filter (QSRF)

☐ The whole structure of QSRF Part One: Samples classification

QSRF structure

Part two: Quad-tree structure

Quad-tree based Sample Refinement Filter (QSRF)

- ☐ Part one: Samples classification
 - Changed samples: (samples are filtered by in-loop filter):

$$C(i,j) = x_1(i,j) * 9 + x_2(i,j) * 3 + x_3$$
(1)
$$x_i(i,j) = \begin{cases} 0, P_i(i,j) = P_{i+1}(i,j) \\ 1, P_i(i,j) > P_{i+1}(i,j) \\ 2, P_i(i,j) < P_{i+1}(i,j) \end{cases}$$
DF SAO ALF

Unchanged samples (samples are not filtered by in-loop filter):
K

$$C_b(i,j) = \left[\frac{K}{2^{bitDepth}} * P_4(i,j)\right] (2)$$

The whole samples are classified into total 26+K classes

Quad-tree based Sample Refinement Filter (QSRF)

☐ Part two: Quad-tree structure (QS)

The root of QS is one frame, the leaves of QS cover an integer number of LCU. The best partitioning result is determined by rate-distortion optimization (RDO).

- ☐ Motivations
- ☐ Quad-tree Sample Refinement Filter (QSRF)
- ☐ The performance of QSRF

The performance of QSRF

- ☐ Objective result
 - HPM-7.0 (the software of AVS3)

Resolution	Sequence	Y	RA U	V	Y	LDB U	V	Y	LDP U	V
		1		<i>v</i>	1		<i>v</i>	1		<i>v</i>
	Tango2	-0.14%	-2.59%	-0.78%	-0.44%	0.06%	-0.23%	-0.41%	-0.10%	-0.49%
Class A	Parkrunning3	-0.37%	-0.21%	-0.11%	-0.53%	-0.18%	-0.21%	-0.53%	-0.07%	-0.09%
	Campfire	-0.59%	-0.62%	-1.29%	-0.80%	-0.72%	-1.20%	-0.82%	-0.67%	-0.97%
	DayLightRoad2	-0.05%	-0.60%	-0.21%	-0.77%	-1.02%	-0.66%	-0.62%	-0.96%	-0.37%
	Cactus	-0.17%	-0.06%	-0.21%	-0.29%	-0.06%	-0.63%	-0.19%	-0.00%	-0.04%
Class B	BasketballDrive	-0.19%	-0.13%	-0.95%	-0.48%	-0.79%	-0.56%	-0.41%	-0.59%	-0.68%
	MarketPlace	-0.37%	-1.08%	-0.76%	-0.71%	-1.44%	-0.79%	-0.79%	-0.03%	-0.55%
	RitualDance	-0.84%	-1.22%	-2.31%	-0.80%	-0.73%	-0.82%	-0.95%	-0.47%	-0.91%
	City	-0.49%	-0.34%	0.03%	-1.26%	-0.66%	0.90%	-1.23%	-0.42%	-0.24%
Class C	Crew	-0.44%	-7.68%	-2.58%	-0.94%	-6.18%	-2.18%	-1.01%	-5.74%	-2.14%
	vidyo1	-0.48%	-0.23%	-1.64%	-1.23%	-0.98%	-0.16%	-0.75%	0.01%	-0.03%
	vidyo3	-0.55%	-0.93%	-1.38%	-1.03%	-1.86%	-0.69%	-0.75%	0.13%	-0.35%
Class A (3840×2160)		-0.29%	-1.00%	-0.60%	-0.63%	-0.46%	-0.57%	-0.59%	-0.45%	-0.48%
Class B (1920×1080)		-0.39%	-0.62%	-1.06%	-0.57%	-0.76%	-0.70%	-0.58%	-0.27%	-0.54%
Class C	Class C (1280×720)		-2.30%	-1.39%	-1.12%	-2.42%	-0.53%	-0.93%	-1.51%	-0.69%
Overall		-0.39%	-1.31%	-1.01 %	-0.77%	-1.21 %	-0.60%	-0.70%	-0.74%	-0.57%

The performance of QSRF

☐ Subjective result

Anchor

Anchor

Test

Test

Thanks!

