
Parallel Processing of 
Grammar Compression

Masaki Matsushita and Yasushi Inoguchi
Japan Advanced Institute of Science and Technology



Introduction

● Grammar compression algorithm
○ generates CFG deriving the input text

● Re-Pair
○ representative grammar compression algorithm
○ achieves high compression ratio for text, graph and tree
○ slower than general compression algorithm in practice

→ we addressed this issue with parallel processing

2



Sample Application of Re-Pair

step sequence dictionary

0 abracadabra X1→ab

1 X1racadX1ra X2→ra

2 X1X2cadX1X2 X3→X1X2

3 X3cadX3

● The most frequent bi-gram is replaced by a new variable
● Output a dictionary and a compressed sequence

3



Parallel Re-Pair: a parallel variant of Re-Pair

4

1. breaks the input text into chunks

2. feed chunks into Re-Pair workers 

3. workers share the dictionary 
synchronized with lock

4. workers share the dictionary 
synchronized with lock



Experiments
● Implemented Parallel Re-pair with pthreads
● On dual Intel(R) Xeon(R) Gold 5220 2.20GHz with 1.5TB RAM
● We used “Pizza & Chili Corpus”

Texts Size (MB) Alphabet Size Contents

sources 202 230 C/Java source code

pitches 54 133 pitch values from MIDI files

protains 1184 27 protein sequences

english 2210 239 English text

xml 283 97 XML that provides bibliographic information

5

Texts used in our experiments



Experimental Results: Compression Time

6

1.6-3.0 times faster
than Re-pair

Input Text



Experimental Results: Compression Ratio

7

slightly worse than Re-pair



Experimental Results: Memory Usage

8

almost same as Re-Pair



Conclusion

● We proposed a parallel variant of Re-Pair
○ simple domain-decomposition method with a shared dictionary

● Our experimental results shows
○ It is 1.6-3.0 times faster than Re-Pair
○ compression ratios are slightly worse than Re-Pair
○ memory consumption is almost same as Re-Pair

● Future work
○ improve compression time by eliminating locks

9


