Parallel Processing of
Grammar Compression

Masaki Matsushita and Yasushi Inoguchi
Japan Advanced Institute of Science and Technology

Introduction

e Grammar compression algorithm
o generates CFG deriving the input text

e Re-Pair

O

O

O

representative grammar compression algorithm
achieves high compression ratio for text, graph and tree
slower than general compression algorithm in practice
— we addressed this issue with parallel processing

Sample Application of Re-Pair

e The most frequent bi-gram is replaced by a new variable
e Qutput a dictionary and a compressed sequence

step sequence dictionary
0 abracadabra X1—>ab

1 X1 racadX1 ra X2—>ra

2 X1X2(:adX1X2 X3—>X1X2
3 X3(:adX3

Parallel Re-Pair: a parallel variant of Re-Pair

Data to Compress

v

1. breaks the input text into chunks | Block 1 Block 2 Block t

(((

2. feed chunks into Re-Pair workers

add
new pair

synchronized with lock synchronized with lock

compressed file

compressed
strings

Experiments

e Implemented Parallel Re-pair with pthreads
e On dual Intel(R) Xeon(R) Gold 5220 2.20GHz with 1.5TB RAM
e We used “Pizza & Chili Corpus”

Texts Size (MB) Alphabet Size | Contents

sources 202 230 C/Java source code

pitches 54 133 pitch values from MIDI files

protains 1184 27 protein sequences

english 2210 239 English text

xml 283 97 XML that provides bibliographic information

Texts used in our experiments

Experimental Results: Compression Time

Compression time for each text 1.6-3.0 times faster
than Re-pair
Input Text M sources [pitches proteins [l english [xml
800
)
§ 600
b
£
Y
o 400
£
5
)]
@ 200
S
£
8 I
0

gzip Re-pair ours (t=2) ours (t=4) ours (t=8) ours (t=16) ours (t=32)

method (t is number of threads)

Experimental Results: Compression Ratio

Compression ratio for each text

compression ratio (%)

60

40

20

B sources

gzip

Re-pair

B pitches proteins [english [xml

slightly worse than Re-pair

ours (t=2) ours (t=4) ours (t=8) ours (t=16) ours (t=32)

method (t is number of threads)

Experimental Results: Memory Usage

Memory usage for each text almost same as Re-Pair
B sources [pitches proteins [english [xml
4000
3000
)
=3
S
& 2000
|
oy
o
S
Q
g 1000
0
gzip Re-pair ours (t=2) ours (t=4) ours (t=8) ours (t=16) ours (t=32)

methods (t is number of threads)

Conclusion

e \We proposed a parallel variant of Re-Pair

o simple domain-decomposition method with a shared dictionary
e Our experimental results shows

o lItis 1.6-3.0 times faster than Re-Pair

o compression ratios are slightly worse than Re-Pair

o memory consumption is almost same as Re-Pair
e Future work

o improve compression time by eliminating locks

