

ON THE NULL SPACE CONSTANT FOR LP MINIMIZATION

In IEEE Signal Processing Letters, vol. 22, no. 10, pp. 1600-1603, 2015.

Laming Chen and Yuantao Gu (http://gu.ee.tsinghua.edu.cn/)

Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

Email: chen-lm06@mails.tsinghua.edu.cn; gyt@tsinghua.edu.cn

1. Background

• ℓ_p -minimization $(0 \le p \le 1)$ in sparse recovery

$$\underset{\mathbf{x}}{\operatorname{argmin}} \sum_{i=1}^{N} |x_i|^p \quad \text{subject to} \quad \mathbf{A}\mathbf{x} = \mathbf{y}$$

- Fundamental optimization problems
- Performance can be viewed as benchmark
- Null space constant

$$\gamma(\ell_p, \mathbf{A}, k) = \max_{\#S \le k} \sup_{\mathbf{z} \in \mathcal{N}(\mathbf{A})} \frac{\sum_{i \in S} |z_i|^p}{\sum_{i \notin S} |z_i|^p}$$

- $\gamma(\ell_p, \mathbf{A}, k) < 1 \Leftrightarrow \ell_p$ -minimization can recover any k-sparse signal
- Current results
 - $\gamma(\ell_p, \mathbf{A}, k)$ is non-decreasing in k
 - $\gamma(\ell_p, \mathbf{A}, k)$ is non-decreasing in $p \in [0,1]$

2. Results for General A

- Let Spark(A) denote the smallest number of columns from A that are linearly dependent.
- Theorem 1. Suppose Spark(A) = L+1. Then for $p \in [0,1]$, $\gamma(\ell_p, A, k)$ is strictly increasing in k when $k \leq L$.
- Theorem 2. Suppose $\mathrm{Spark}(\mathbf{A}) = L + 1$. Then for $k \leq L$, $\gamma(\ell_p, \mathbf{A}, k)$ is continuous in p when $p \in [0,1]$.
- Corollary 1. If $\gamma(\ell_0, \mathbf{A}, k) < 1$, then there exists a p > 0 such that $\gamma(\ell_p, \mathbf{A}, k) < 1$.
- Corollary 2. If $\gamma(\ell_0, \mathbf{A}, k) < 1$ and $\gamma(\ell_1, \mathbf{A}, k) \ge 1$, then there exists a $p_k^* > 0$ such that $\gamma(\ell_p, \mathbf{A}, k) < 1$ if and only if $p \in [0, p_k^*)$.
- Corollary 3. Let k_p^* denote the largest integer such that $\gamma(\ell_p, \mathbf{A}, k_p^*) < 1$. Then k_p^* is a non-increasing step function in $p \in [0,1]$, and the height of each step is 1.

3. Results for Random A

• Theorem 3. Suppose the entries of $A \in \mathbb{R}^{M \times N}$ are i.i.d. and satisfy a continuous probability distribution. Then for $k \leq M$, $\gamma(\ell_p, A, k)$ is strictly increasing in $p \in [0,1]$ with probability 1.

4. Conclusion

- Some basic properties of $\gamma(\ell_p, A, k)$
 - $\gamma(\ell_p, \mathbf{A}, k)$ is strictly increasing in k
 - $\gamma(\ell_p, \mathbf{A}, k)$ is continuous in p
 - $\gamma(\ell_p, A, k)$ is strictly increasing in p with probability 1 for random A
- Possible future works include the properties of $\gamma(\ell_p, A, k)$ in A.