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Background

Deep Neural Network(DNN)
o Application

Detection, recognition, verification and other tasks.
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Problem Statement

s Comparative analysis of redundancy

0 The redundancy of SqueezeNet (lightweight neural network)

approaches 85% and less than VGG16(classical neural
network) |
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Problem Statement

m Accuracy reduction and robustness analysis

0 Accuracy vs Bit width

[ . . ) w . [ . 35 -
?O 1 " v v . 4 \ 4 ¥ . 4 v
| ]
30 i
G0
- L v v Y x * & @ . . . B - .
A A "
550 - 25
g B s .
g ® 20-
= 40 + 15
o A S
o g A
4 ) 15
0 . VGG16 ,
& VGG16 full precision = A = VGG16
20 & SqueezeNet 104 « 4 s = VGG16 full precision
' 4 SgueezeNet
e pron v SqueezeNet full precision
10 » T T T T T T 1 5 ' 1 U 1 1 L
1 2 3 4 5 6 7 B 1 2 3 4 5 6 7 g
bit width bit width

(a) With Clean image (b) With adversarial image




Beihang Unlvemty

School of Computer Science & Engineerin

:It:ﬂ!ﬁEBﬁE:k#ﬂ‘ﬁl’l#ﬁ

Outline

) Background and Motivation
@ Problem Statement

@ Our Solutions

@ Experiments

©® Conclusion

T
N

) IEFIE AR KE

eeeeeeeeeeeeeeee




Beihang University

School of Computer Science & Engineering

A RMEREXSH BN

Our Solutions

Image Dataset

Sample image

Feature extractor —|

Feature classifier —

Original-NN Quantized-NN

R

Non-sensitive

+ perturbation loss

Discriminator
Net |

|
|
|
|
|
|
Score cases: | cll
]
|

Update
y
Update
Casel :RF got low score |
Case2 FF got high score ] ‘z,ﬁi K*)?
Case3:FF got low score _—— N 6 UNIVERSITY




Beihang Unlvemty

School of Computer Science & Engineerin

:It:ﬂ!ﬁEBﬁE:k#ﬂ‘ﬁl’l#ﬁ

Outline

) Background and Motivation
@ Problem Statement

@ Our Solutions

@ Experiments

©® Conclusion




@

Beihang University

School of Computer Science & Engineering

IERMBMAXKZHEMEZR

Experiments

Table 1. The accuracy of quantized ResNet20 and SqueezeNet on CIFAR-10 dataset.

Method Full-Precision(%) Quantization TOP1 Acc.(%)
Bit-width(w/a) 32/32 2/2 3/3 4/4
DoReFa 88.2/83.9 | 88.8/88.9 | 89.4/89.0
ResNet20/ PACT 89.2/85.4 | 89.6/89.3 | 91.2/89.5
SqueezeNe 89.3(+1.1) | 90.1(+1.3) | 91.1(+0.7)
_|_
t DoReFatSRQ | 918/925 | 185 9(+2.0) | 189.9(+1.0) | /90.4(+1.4)
89.9(+0.7) | 90.7(+1.1) | 91.7(+0.5)
+
PACTHSRQ /87.3(+1.9) [/90.3(+1.0) [ /90.6(+1.1)

Table 2. The accuracy of quantized ResNet18 and MoblieNetV2 on ImageNet dataset.

LNN Method Full-Precision(%) Quantization TOP1 Acc.(%)
Bit-width(w/a) 32/32 272 3/3 4/4
DoReFa 62.6/60.9 67.5/63.7 68.1/68.6
ResNetl18 PACT 67.0/61.4 68.1/67.5 69.2/69.6
/MoblieN 63.8(+1.2)/ | 68.3(+0.8) | 69.5(+1.4)
ety2 | DOReFatSRQ | T04TLT 6 6141.7) | /64.9(+1.2) | 169.7(+1.1)
68.3(+1.3)/ | 69.1(+1.0) | 69.9(+0.7)
PACTHSRQ 63.7(+2.3) | /69.4(+1.9) | /70.1(+0.5)
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Experiments

» vanilla quantzation
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(c)Variation of accuracy

(a) The robustness-aware advantages of our algorithm on the adversarial image
dataset, (b) and (c) show the variation trend of loss and accuracy during
quantization progress, respectively.
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Conclusion

m Propose a novel robustness-aware self-reference

quantization scheme to guarantee the accuracy and
robustness during the quantization process.

= As a by-product, we can combine the other excellent
quantization methods with our framework to further
improve the accuracy and robustness.

s Experimental results show that our approach
outperforms to the existing best perform methods.
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