

SRQ: Self-reference quantization scheme for lightweight neural network

Xiaobin Li^{1,2}, Hongxu Jiang^{1,2}, Shuangxi Huang¹, Fangzheng Tian¹, Runhua Zhang¹ and Dong Dong¹

¹ Beijing Key Lab Digital Media, State Key Lab Virtual Real Technology & Systems, BeiHang University

² Hangzhou Innovation Institute, BeiHang University

- Background and Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

- Background and Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

Background

- Deep Neural Network(DNN)
 - Application

Detection, recognition, verification and other tasks.

Representatives

如 北京航空航天

- Background and Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

Problem Statement

- Comparative analysis of redundancy
 - □ The redundancy of SqueezeNet (lightweight neural network) approaches 85% and less than VGG16(classical neural

Problem Statement

- Accuracy reduction and robustness analysis
 - Accuracy vs Bit width

(a) With Clean image

(b) With adversarial image

- Background and Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

Our Solutions

- Background and Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

Experiments

Table 1. The accuracy of quantized ResNet20 and SqueezeNet on CIFAR-10 dataset.

	Method	Full-Precision(%)	Quantization TOP1 Acc.(%)		
ResNet20/ SqueezeNe t	Bit-width(w/a)	32/32	2/2	3/3	4/4
	DoReFa	91.8/92.5	88.2/83.9	88.8/88.9	89.4/89.0
	PACT		89.2/85.4	89.6/89.3	91.2/89.5
	DoReFa+SRQ		89.3 (+1.1)	90.1(+1.3)	91.1(+0.7)
			/85.9 (+2.0)	/89.9 (+1.0)	/90.4 (+1.4)
	PACT+SRQ		89.9(+0.7)	90.7 (+1.1)	91.7 (+0.5)
			/87.3 (+1.9)	/90.3 (+1.0)	/90.6 (+1.1)

Table 2. The accuracy of quantized ResNet18 and MoblieNetV2 on ImageNet dataset.

LNN	Method	Full-Precision(%)	Quantization TOP1 Acc.(%)		
ResNet18 /MoblieN etV2	Bit-width(w/a)	32/32	2/2	3/3	4/4
	DoReFa	70.4/71.7	62.6/60.9	67.5/63.7	68.1/68.6
	PACT		67.0/61.4	68.1/67.5	69.2/69.6
	DoReFa+SRQ		63.8 (+1.2) /	68.3(+0.8)	69.5 (+1.4)
			62.6 (+1.7)	/64.9 (+1.2)	/69.7 (+1.1)
	PACT+SRQ		68.3 (+1.3) /	69.1 (+1.0)	69.9 (+0.7)
			63.7 (+2.3)	/69.4 (+1.9)	/70.1 (+0.5)

Experiments

(a) The robustness-aware advantages of our algorithm on the adversarial image dataset, (b) and (c) show the variation trend of loss and accuracy during quantization progress, respectively.

- Background and Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

Conclusion

- Propose a novel robustness-aware self-reference quantization scheme to guarantee the accuracy and robustness during the quantization process.
- As a by-product, we can combine the other excellent quantization methods with our framework to further improve the accuracy and robustness.
- Experimental results show that our approach outperforms to the existing best perform methods.

Q & A

Thank You