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Motivation

Large data sets

Biological sequences
Web graph
Geographical images etc.

Goal:

Representation of the data;
Retrieval of the queries;
Minimise resources: Time and Space.

Compression – a potential solution (?)

Decompressing before the operations could:

be time inefficient, specifically when a tiny part is to be read;
not be feasible as not enough disk space.

Can we operate directly on the compressed data?
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Compressed Data Structures

Set-up:

Given input data (i.e., some combinatorial object) S , can we
represent S efficiently so as to perform queries in (close to)
constant time?
Efficiently could be:

Compact: O(ITLB)
Succinct: ITLB + o(ITLB)
Implicit/in-place: ITLB + O(1)

where ITLB= Information-theoretic lower bound.
Model: Word-RAM with logarithmic word size and uniform
cost; space is counted in bits.
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Examples of Succinct Data Structures

Sequences:

Data: x ∈ Σn for some alphabet Σ = {0, 1, · · · , σ − 1}
Naive encoding: n dlg σe bits.
ITLB: lg σn = dn lg σe bits (DPT’10)

Ordinal Trees:

Data: x is an ordinal tree with n nodes.
Ordinal: rooted tree, arbitrary # children, order matters.
Naive encoding: ≥ n pointers; Ω(n lg n) bits.
ITLB: lg( 1

n+1

(
2n
n

)
) = 2n − O(lg n) bits (FM’08)

(Arbitrary and various special classes of) Graphs,
Permutations, Functions, Equivalence classes etc.

“Application-Oriented Succinct Data Structures for Big Data”
by Tetsuo Shibuya 2019.
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Our Work

We consider the problem of designing succinct data structures
supporting basic navigational queries such as degree,
adjacency and neighborhood efficiently for various intersection
graphs on a circle.

These include graph classes such as circle graphs,
k-polygon-circle graphs, circle-trapezoid graphs etc.
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Definitions

A circle graph is defined as the intersection graph of chords in
a circle.
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Definitions

Polygon-circle graphs are the intersection graphs of convex
polygons inscribed into a circle, and the special case, when all
the convex polygons have exactly k corners, we call the
intersection graph k-polygon-circle.
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Definitions

Circle-trapezoid graphs are the intersection graphs of circle
trapezoids on a common circle, where a circle trapezoid is
defined as the convex hull of two disjoint arcs on the circle.
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Definitions
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Main Result: Lower Bounds

Table: Lower bounds of families of intersection graphs.

Graph class Space lower bound (in bits)

circle n log n −O(n)
k-polygon-circle (k − 1)n log n −O(kn log log n)
circle-trapezoid 3n log n − 4 log log n −O(n)

Sankardeep Chakraborty Succinct Representations of Intersection Graphs on a Circle



Main Result: Upper Bounds

Theorem

There exist succinct encodings for previously mentioned graph
classes such that adjacent(u, v) query can be reported in
O(k log log n) time, and neighborhood(v) and degree(v) queries
can be answered in O(k |degree(v)|· log log n) time.
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Proof Sketch for Circle Graph Lower Bound
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Proof Sketch for Circle Graph Lower Bound

For each pair in the matching, if we draw the chord
connecting the points in the pair, we get n chords which gives
a colored circle graph. (Each chord corresponds to a vertex.)

The 2k vertices corresponding to the special 2k chords are
colored 1 through 2k (in the same canonical order), and the
other n − 2k vertices are uncolored.

Let M be a matching from ∪ki=1Ai to ∪2kj=k+1Aj . We call M a
bad matching if it contains a triple of pairs
((x1, y1), (x2, y2), (x3, y3)) such that x1, x2, x3 lie on Ai for
some i ≤ k and y1, y2, y3 lie on Ak+j for some j ≤ k .
Otherwise we call it a good matching (denoted by M).
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Proof Sketch for Circle Graph Lower Bound
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Almost all matchings are good

Theorem

Let k = n3/4+ε for some fixed small ε > 0. For a random matching
M, the expected number of triples of pairs
((x1, y1), (x2, y2), (x3, y3)) in bad matching tends to 0 as n→∞.

i.e, |M|
(k`)! = 1− o(1) as n→∞. Consequently, almost all

matchings are good.

A good matching can be recovered from its (colored) circle
graph. In other words, there is a one to one matching between
the set of good matchings and their corresponding graphs.
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Proof Sketch for Circle Graph Lower Bound

Let Cn be the number of unlabeled circle graphs with n
vertices. Then,

Cn

(
n

2k

)
(2k)! ≥ number of circle graphs with 2k colored vertices

≥ number of circle graphs obtained from the construction above

≥ |M|

As |M| = (1− o(1))(k`)! = (1− o(1))(n− 2k)!, we get after
simplifying, logCn = n log n − O(n). Hence, we need at least
n log n − O(n) bits to represent a circle graph with n nodes.
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Future Directions

Faster query times?

Other graphs?
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Thank You.
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