Succinct Representations of Intersection Graphs on a Circle

Hüseyin Acan Sankardeep Chakraborty Seungbum Jo Kei Nakashima Kunihiko Sadakane Srinivasa Rao Satti
DATA COMPRESSION CONFERENCE (DCC)

February 28, 2021

Motivation

Motivation

- Large data sets
- Biological sequences
- Web graph
- Geographical images etc.

Motivation

- Large data sets
- Biological sequences
- Web graph
- Geographical images etc.
- Goal:
- Representation of the data;
- Retrieval of the queries;
- Minimise resources: Time and Space.

Motivation

- Large data sets
- Biological sequences
- Web graph
- Geographical images etc.
- Goal:
- Representation of the data;
- Retrieval of the queries;
- Minimise resources: Time and Space.
- Compression - a potential solution (?)

Motivation

- Large data sets
- Biological sequences
- Web graph
- Geographical images etc.
- Goal:
- Representation of the data;
- Retrieval of the queries;
- Minimise resources: Time and Space.
- Compression - a potential solution (?)
- Decompressing before the operations could:
- be time inefficient, specifically when a tiny part is to be read;
- not be feasible as not enough disk space.

Motivation

- Large data sets
- Biological sequences
- Web graph
- Geographical images etc.
- Goal:
- Representation of the data;
- Retrieval of the queries;
- Minimise resources: Time and Space.
- Compression - a potential solution (?)
- Decompressing before the operations could:
- be time inefficient, specifically when a tiny part is to be read;
- not be feasible as not enough disk space.
- Can we operate directly on the compressed data?

Compressed Data Structures

Compressed Data Structures

- Set-up:

Compressed Data Structures

- Set-up:
- Given input data (i.e., some combinatorial object) S, can we represent S efficiently so as to perform queries in (close to) constant time?

Compressed Data Structures

- Set-up:
- Given input data (i.e., some combinatorial object) S, can we represent S efficiently so as to perform queries in (close to) constant time?
- Efficiently could be:
- Compact: O (ITLB)
- Succinct: ITLB $+o$ (ITLB)
- Implicit/in-place: ITLB $+O(1)$
where ITLB = Information-theoretic lower bound.
- Model: Word-RAM with logarithmic word size and uniform cost; space is counted in bits.

Examples of Succinct Data Structures

Examples of Succinct Data Structures

- Sequences:
- Data: $x \in \Sigma^{n}$ for some alphabet $\Sigma=\{0,1, \cdots, \sigma-1\}$
- Naive encoding: $n\lceil\lg \sigma\rceil$ bits.
- ITLB: $\lg \sigma^{n}=\lceil n \lg \sigma\rceil$ bits (DPT'10)

Examples of Succinct Data Structures

- Sequences:
- Data: $x \in \Sigma^{n}$ for some alphabet $\Sigma=\{0,1, \cdots, \sigma-1\}$
- Naive encoding: $n\lceil\lg \sigma\rceil$ bits.
- ITLB: $\lg \sigma^{n}=\lceil n \lg \sigma\rceil$ bits (DPT'10)
- Ordinal Trees:
- Data: x is an ordinal tree with n nodes.
- Ordinal: rooted tree, arbitrary \# children, order matters.
- Naive encoding: $\geq n$ pointers; $\Omega(n \lg n)$ bits.
- ITLB: $\lg \left(\frac{1}{n+1}\binom{2 n}{n}\right)=2 n-O(\lg n)$ bits (FM'08)

Examples of Succinct Data Structures

- Sequences:
- Data: $x \in \Sigma^{n}$ for some alphabet $\Sigma=\{0,1, \cdots, \sigma-1\}$
- Naive encoding: $n\lceil\lg \sigma\rceil$ bits.
- ITLB: $\lg \sigma^{n}=\lceil n \lg \sigma\rceil$ bits (DPT'10)
- Ordinal Trees:
- Data: x is an ordinal tree with n nodes.
- Ordinal: rooted tree, arbitrary \# children, order matters.
- Naive encoding: $\geq n$ pointers; $\Omega(n \lg n)$ bits.
- ITLB: $\lg \left(\frac{1}{n+1}\binom{2 n}{n}\right)=2 n-O(\lg n)$ bits (FM'08)
- (Arbitrary and various special classes of) Graphs, Permutations, Functions, Equivalence classes etc.

Examples of Succinct Data Structures

- Sequences:
- Data: $x \in \Sigma^{n}$ for some alphabet $\Sigma=\{0,1, \cdots, \sigma-1\}$
- Naive encoding: $n\lceil\lg \sigma\rceil$ bits.
- ITLB: $\lg \sigma^{n}=\lceil n \lg \sigma\rceil$ bits (DPT'10)
- Ordinal Trees:
- Data: x is an ordinal tree with n nodes.
- Ordinal: rooted tree, arbitrary \# children, order matters.
- Naive encoding: $\geq n$ pointers; $\Omega(n \lg n)$ bits.
- ITLB: $\lg \left(\frac{1}{n+1}\binom{2 n}{n}\right)=2 n-O(\lg n)$ bits (FM'08)
- (Arbitrary and various special classes of) Graphs, Permutations, Functions, Equivalence classes etc.
- "Application-Oriented Succinct Data Structures for Big Data" by Tetsuo Shibuya 2019.

Our Work

Our Work

- We consider the problem of designing succinct data structures supporting basic navigational queries such as degree, adjacency and neighborhood efficiently for various intersection graphs on a circle.

Our Work

- We consider the problem of designing succinct data structures supporting basic navigational queries such as degree, adjacency and neighborhood efficiently for various intersection graphs on a circle.
- These include graph classes such as circle graphs, k-polygon-circle graphs, circle-trapezoid graphs etc.

Definitions

Definitions

- A circle graph is defined as the intersection graph of chords in a circle.

- Polygon-circle graphs are the intersection graphs of convex polygons inscribed into a circle, and the special case, when all the convex polygons have exactly k corners, we call the intersection graph k-polygon-circle.

Definitions

- Circle-trapezoid graphs are the intersection graphs of circle trapezoids on a common circle, where a circle trapezoid is defined as the convex hull of two disjoint arcs on the circle.

Definitions

(a)

(b)

Main Result: Lower Bounds

Table: Lower bounds of families of intersection graphs.

Graph class	Space lower bound (in bits)
circle	$n \log n-\mathrm{O}(n)$
k-polygon-circle	$(k-1) n \log n-\mathrm{O}(k n \log \log n)$
circle-trapezoid	$3 n \log n-4 \log \log n-\mathrm{O}(n)$

Main Result: Upper Bounds

Theorem

There exist succinct encodings for previously mentioned graph classes such that adjacent (u, v) query can be reported in $\mathrm{O}(k \log \log n)$ time, and neighborhood(v) and degree(v) queries can be answered in $\mathrm{O}(k|\operatorname{degree}(v)| \cdot \log \log n)$ time.

Proof Sketch for Circle Graph Lower Bound

Proof Sketch for Circle Graph Lower Bound

Proof Sketch for Circle Graph Lower Bound

Place $2 n$ points, label these clockwise such that first n points lie on the upper semi circle and the rest lie on lower semicircle

Proof Sketch for Circle Graph Lower Bound

Place $2 n$ points, label these clockwise such that first n points lie on the upper semi circle and the rest lie on lower semicircle

Proof Sketch for Circle Graph Lower Bound

Place $2 n$ points, label these clockwise such that first n points lie on the upper semi circle and the rest lie on lower semicircle

These $2 n$ points will be the endpoints of n disjoint chords

Proof Sketch for Circle Graph Lower Bound

On each semicircle, take k chords, each of which determines an arc with I points on it, excluding the endpoints of the chord

Proof Sketch for Circle Graph Lower Bound

On each semicircle, take k chords, each of which determines an arc with I points on it, excluding the endpoints of the chord

$$
\text { Here } \mathrm{k}=5 \text { and } \mathrm{l}=4
$$

Proof Sketch for Circle Graph Lower Bound

Proof Sketch for Circle Graph Lower Bound

Color the special chords with the color 1 through $2 k$ in clockwise order starting from point 1

Proof Sketch for Circle Graph Lower Bound

Color the special chords with the color 1 through 2 k in clockwise order starting from point 1

Proof Sketch for Circle Graph Lower Bound

So far $4 k$ out of $2 n$ points have been used. Remaining ($2 n$ - $4 k$) points lie on $2 k$ arcs determined by the $2 k$ special chords. We want, $2 k l+4 k=2 n$, thus, $I=(n-2 k) / k$

$$
\text { Here } \mathrm{k}=5 \text { and } \mathrm{l}=4
$$

Proof Sketch for Circle Graph Lower Bound

We want to match unused kl points on the upper semicircle with kl unused points on the lower semicircle. \#matchings= (k)!

Here $\mathrm{k}=5$ and $\mathrm{l}=4$

Proof Sketch for Circle Graph Lower Bound

We want to match unused kl points on the upper semicircle with kl unused points on the lower semicircle. \#matchings=(k)!

Here $\mathrm{k}=5$ and $\mathrm{l}=4$

Proof Sketch for Circle Graph Lower Bound

- For each pair in the matching, if we draw the chord connecting the points in the pair, we get n chords which gives a colored circle graph. (Each chord corresponds to a vertex.)
- The $2 k$ vertices corresponding to the special $2 k$ chords are colored 1 through $2 k$ (in the same canonical order), and the other $n-2 k$ vertices are uncolored.

Proof Sketch for Circle Graph Lower Bound

- For each pair in the matching, if we draw the chord connecting the points in the pair, we get n chords which gives a colored circle graph. (Each chord corresponds to a vertex.)
- The $2 k$ vertices corresponding to the special $2 k$ chords are colored 1 through $2 k$ (in the same canonical order), and the other $n-2 k$ vertices are uncolored.
- Let M be a matching from $\cup_{i=1}^{k} A_{i}$ to $\cup_{j=k+1}^{2 k} A_{j}$. We call M a bad matching if it contains a triple of pairs $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right)$ such that x_{1}, x_{2}, x_{3} lie on A_{i} for some $i \leq k$ and y_{1}, y_{2}, y_{3} lie on A_{k+j} for some $j \leq k$. Otherwise we call it a good matching (denoted by \mathcal{M}).

Proof Sketch for Circle Graph Lower Bound

Almost all matchings are good

Theorem

Let $k=n^{3 / 4+\epsilon}$ for some fixed small $\epsilon>0$. For a random matching M, the expected number of triples of pairs
$\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right)$ in bad matching tends to 0 as $n \rightarrow \infty$.
i.e, $\frac{|\mathcal{M}|}{(k \ell)!}=1-o(1)$ as $n \rightarrow \infty$. Consequently, almost all matchings are good.

Almost all matchings are good

Theorem

Let $k=n^{3 / 4+\epsilon}$ for some fixed small $\epsilon>0$. For a random matching M, the expected number of triples of pairs
$\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right)$ in bad matching tends to 0 as $n \rightarrow \infty$. i.e, $\frac{|\mathcal{M}|}{(k \ell)!}=1-o(1)$ as $n \rightarrow \infty$. Consequently, almost all matchings are good.

- A good matching can be recovered from its (colored) circle graph. In other words, there is a one to one matching between the set of good matchings and their corresponding graphs.
- Let C_{n} be the number of unlabeled circle graphs with n vertices. Then,
$C_{n}\binom{n}{2 k}(2 k)!\geq$ number of circle graphs with $2 k$ colored vertices
\geq number of circle graphs obtained from the construction
$\geq|\mathcal{M}|$
- Let C_{n} be the number of unlabeled circle graphs with n vertices. Then,
$C_{n}\binom{n}{2 k}(2 k)!\geq$ number of circle graphs with $2 k$ colored vertices
\geq number of circle graphs obtained from the construction
$\geq|\mathcal{M}|$
- As $|\mathcal{M}|=(1-o(1))(k \ell)!=(1-o(1))(n-2 k)$!, we get after simplifying, $\log C_{n}=n \log n-O(n)$. Hence, we need at least $n \log n-O(n)$ bits to represent a circle graph with n nodes.

Future Directions

- Faster query times?
- Other graphs?

Thank You.

