
Succinct Data Structures for Small
Clique-Width Graphs

Seungbum Jo (Chungbuk National University, South Korea)

Joint work with

Sankardeep Chakraborty (NII, Japan)

Kunihiko Sadakane (The University of Tokyo, Japan)

Srinivasa Rao Satti (NTNU, Norway)

DCC 2021

Clique-Width

Consider the following four operations on (undirected) graphs.

1. Create a vertex v with color i (denoted as v(i))

2. Disjoint union of labeled (colored) graph G and H (denoted as G ⊕ H)

1(g) 2(r) 3(g)

G H G ⊕ H

Clique-Width

Consider the following four operations on (undirected) graphs.

3. Join the color i and j (denoted as ηij)

4. Recolor all the vertices of color i to j (denoted as ρij)

ηrg

ρgb

Clique-Width

- Clique-width of G (cw(G)) : Number of minimum colors to construct G using the previous
four operations.

Some examples

Clique-width 2 : Cliques, cographs….
Clique-width 3 : Distance-hereditary graph, 3-leaf power….

- Computing the clique-width of arbitrary graph is NP-hard.
- For small clique-width graphs, many NP-hard problems on general graphs (3-colorability,

Hamiltonian cycles …) can be solved in polynomial time.

cw(G) = 3

Problem statement

Problem : Given an undirected, unlabeled graph G with n vertices whose clique-width is k, is
there any space-efficient data structure to support the following queries in efficient time ?

For any vertices u, v ∈ G

1. degree (v) : returns the degree of v.
2. neighborhood(v) : returns all the vertices adjacent to v.
3. adjacent (u, v) : returns true iff u and v are adjacent.

1

2

34

5
degree (1) = 3

neighborhood (1) = {2, 3, 5}

adjacent (1, 4) = false

Previous results & Our results

Problem : Given an undirected, unlabeled graph G with n vertices whose clique-width is k, is
there any space-efficient data structure to support degree, neighborhood, and adjacent queries
in efficient time ?

- f(n, k): Information-theoretical lower bound of space to represent G.

- Kamali (2018) showed that (k-8)n ≤ f(n, k) ≤ 9kn, for k ≥ 9.

- Our data structure is succinct when 𝑘 ≤ 𝜖 log n/log log 𝑛.

- For constant k, our data structure supports degree and adjacent query in O(1) time, and
neighborhood query in O(log n) time per neighbor.

Space (in bits) degree
neighborhood
(per neighbor)

adjacent

Kamali (2018)
O(kn)

(O(knlog*n) bits for
degree queries)

O(klog *n) O(1) O(1)

Our results

(𝑘 ≤ 𝜖 log n/log log 𝑛)
f(n,k) + o(f(n,k)) O(k) O(log n / k) O(k)

Succinct Encoding

- If one knows the clique-width of G (= k) there exists a k-expression that constructs G.

- Any k-expression can be represented by a labeled tree structure, named union tree T.

- One can reconstruct G from the union tree T of G

→ Encoding of T gives an encoding of G !

𝜂𝑟𝑔(𝜂𝑟𝑔 4 𝑔 ⊕ 5 𝑟 ⊕ 𝜂𝑟𝑔, 𝜂𝑏𝑟((1(𝑔) ⊕ 2(𝑏)) ⊕ 3(𝑟)))

⊕
⊕

⊕

⊕

4 𝑔 5 𝑟 1(𝑔) 2(𝑏) 3(𝑟)

𝜂𝑟𝑔𝜂𝑟𝑔

𝜂𝑟𝑔

1

2

34

5

G (clique-width :3) Union tree T of G

3-expression of G

𝜂𝑏𝑟

Succinct Encoding

Outline of the encoding :

How to encode T ? : Tree covering [FM14]

- Two-level decomposition algorithm (T → mini-tree → micro-tree)
- Tree over mini-trees, and mini-tree over micro-trees are stored using the pointer-based

representation.
- Each micro-tree is stored as the index of the precomputed table, which stores all possible

types of the micro-trees (with additional information for queries).
- Can support wide range of navigation queries on trees in O(1) time.

𝜂𝑟𝑔𝜂𝑟𝑔

𝑎

𝑑

𝑐

𝑑

Dummy

𝜂𝑟𝑔

T

Tree over mini-tree

Mini-tree over micro-tree
⊕ ⊕

⊕

⊕

4 𝑔 5 𝑟 1(𝑔) 2(𝑏) 3(𝑟)

𝜂𝑟𝑔𝜂𝑟𝑔

𝜂𝑟𝑔 𝑎

𝑏

𝑐
𝑑

mini-tree

Micro-tree

𝑐1

𝑐2 𝑐3

𝑐1

𝑐2 𝑐3

Index Tree …

0 …

1 …

… … … Precomputed table

𝜂𝑏𝑟

𝜂𝑏𝑟

1

2

34

5

G

Succinct Encoding

Outline of the encoding

- Tree on micro-trees and mini-tree over micro trees can be stored in o(kn) bits of space.

Problem : #non-isomorphic (colored, labeled) micro-trees >> #non-isomorphic clique-width
k graphs with same size

→ Size of the pre-computed table is too large to encode every micro trees of T using the
index of the table in succinct space.

How to solve this problem ?

Index Tree …

0 …

1 …

… … …

Precomputed table

Same graph !

T

⊕ ⊕

⊕

⊕

4 𝑔 5 𝑟 1(𝑔) 2(𝑏) 3(𝑟)

𝜂𝑟𝑔𝜂𝑟𝑔

𝜂𝑟𝑔

𝜂𝑏𝑟
1

2

34

5

G

Succinct Encoding

Outline of the encoding

Solution : Maintain a precomputed table to store every clique-width k graph (proportional to
the size of the micro-tree of T), instead of the micro-tree.

Problem : Loose the information about the colors of vertices.

Index Graph …

0 Empty …

1 …

… … …

Precomputed table

T

⊕ ⊕

⊕

⊕

4 𝑔 5 𝑟 1(𝑔) 2(𝑏) 3(𝑟)

𝜂𝑟𝑔𝜂𝑟𝑔

𝜂𝑟𝑔

𝜂𝑏𝑟
1

2

34

5

G

Succinct Encoding

Outline of the encoding

Problem : Loose the information about the colors of vertices.

Key observation : We only need color of vertices at the root of the micro-tree.

→ Add some dummy nodes to decode them.

Index Graph …

0 Empty …

1 …

… … …

Precomputed table

T

⊕ ⊕

⊕

⊕

4 𝑔 5 𝑟 1(𝑔) 2(𝑏) 3(𝑟)

𝜂𝑟𝑔𝜂𝑟𝑔

𝜂𝑟𝑔

𝜂𝑏𝑟
1

2

34

5

G

Succinct Encoding

Outline of the encoding

We define two types of dummy nodes on each micro-tree

Type-1 dummy nodes : To decode the color of each vertices at the root of the micro-tree.

→ Decode the color by checking the adjacency with the dummy nodes (using precomputed
table).

⊕

1(𝑔) Type-1 dummy
(adjacent to 1)

𝜂𝑟𝑔, ρrg

T

⊕ ⊕

⊕

⊕

4 𝑔 5 𝑟 1(𝑔) 2(𝑏) 3(𝑟)

𝜂𝑟𝑔𝜂𝑟𝑔

𝜂𝑟𝑔

𝜂𝑏𝑟

1

2

34

5

G
(including dummies)

Outline of the encoding

We define two types of dummy nodes on each micro-tree

- Each micro tree t is connected by at most 1 another micro-tree t’ by a boundary edge.

Type-2 dummy nodes : To decode the connection between the vertices in t and all the vertices
in the subtree at the root of t’.

Succinct Encoding

⊕ ⊕

⊕

⊕

4 𝑔 5 𝑟 1(𝑔) 2(𝑏) 3(𝑟)

𝜂𝑟𝑔𝜂𝑟𝑔

𝜂𝑟𝑔

Boundary edge

𝑡′

𝑡 ⊕

1(𝑔) Type-1 dummy
(adjacent to 1)

𝜂𝑟𝑔, ρrg

⊕

⊕

Type-2 dummies

𝜂𝑏𝑟

T

1

2

34

5

G
(including dummies)

Outline of the encoding

- We encode the corresponding graph of the micro-tree (with Type-1 and 2 dummy nodes) as
an index of the precomputed table.

- The additional information of dummy nodes (position, colors….) is stored explicitly.

- Since the k is small (𝑘 ≤ 𝜖 log n/log log 𝑛), and there exists at most 2k dummy nodes for each

micro-tree of T, all the additional information can be stored in succinct space.

Succinct Encoding

⊕ ⊕

⊕

⊕

4 𝑔 5 𝑟 1(𝑔) 2(𝑏) 3(𝑟)

𝜂𝑟𝑔𝜂𝑟𝑔

𝜂𝑟𝑔

Boundary edge

⊕

1(𝑔) Type-1 dummy
(adjacent to 1)

𝜂𝑟𝑔, ρrg

⊕

⊕

Type-2 dummies

Index Graph …

0 Empty …

1 …

… … …

10 …

… … …

Precomputed table

𝜂𝑏𝑟

1

2

34

5 G
(including dummies)

- Maintain the similar auxiliary structures of Kamali (2018), with some modifications for keeping
the information on the nodes in tree over micro-trees.

- There exists some time blow-up for neighborhood queries, since we need to search every
vertex in the micro-tree which has at least one neighborhood of the query vertex.

Query Algorithms

- Succinct data structure for the graphs with small bounded clique-width.

- Compare to the Kamali (2018)’s result, our data structure can support degree queries in O(k)
time, still using succinct space.

- Since the cograph is equivalent to the graph with clique-width 2, our data structure gives a
succinct data structure for cographs.

Further improvements (not in the paper)

- Succinct ds for cograph with O(1) time neighborhood query (per neighbor).
- Succinct ds for distance-hereditary graphs and Ptolemaic graphs (subclasses of the graph

whose clique-width is 3).

Open question

: Currently succinct data structure for graphs with bounded width parameter is only considered
for tree-width (FK14) and clique-width. Can we design succinct data structures w.r.t. other width
parameters?

Conclusion

