CORRELATION-STATISTICS-BASED SIMULATOR OF PERTURBED PHASES TRIGGERED BY THE IONOSPHERIC IRREGULARITIES FOR HF RADAR SYSTEMS

Overview To simulate the perturbed phases of ionospherically propagated HF radio waves, the paper focuses on the following aspects: Analysis of the perturbed phases in space-time correlation and statistical distribution Derivation of the correlation-statistics-based simulator Effectiveness verification of the simulator **Mathematical Basis** regularity lonosphere $Z = Z_t$ inside Subscreens Z = 0 -Rough surface of random phase Planar surfaces o constant phase Transmitting antenna arra Illustration of signal wavefront distortions. Fig.

Space-time correlation function

$$R_{A_c}(\rho_c) \approx 1 + \langle \varphi_1^2 \rangle \frac{\kappa_0^2 \rho_c^2}{\pi} \ln \frac{\kappa_0 \rho_c}{2} \qquad (1)$$

$$R_{A_c}(T_c) = \left\langle e^{-j\varphi_1(x,y,T) + j\varphi_1(x,y,T+T_c)} \right\rangle$$

$$\approx 1 - \left\langle \varphi_1^2 \right\rangle \kappa_0^2 v_d^2 T_c^2 / 2$$
(2)

 $\langle \varphi_1^2 \rangle$ is the mean-square phase fluctuation; κ_0 is the ionosphere outer scale parameter; is the plasma drift velocity; v_d

 Amplitude statistics analysis of the perturbed phases based on multiple phasescreen method

$$\chi_{c}\left(\rho_{l}\right) = \sum_{i=0}^{M} \phi_{i}\left(\rho_{l}\right)$$
(3)

 $\phi_i(\rho_l)$ is random phase changes at each phase screen;

- is the number of phase screen intervals;
- Wiener-Khinchin theorem

Yongpeng Zhu, Yinsheng Wei and Peng Tong School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China

