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Motivation

• Interactive streaming of sound is getting more and more popular.
• For example, Zoom, Google Meet, and TEAMS are often used for online teaching.
• State-of-the-art speech/audio coders: BV32, MPEG, AAC-ELD, MPEG-USAC, 3GPP EVS, 

Opus.
• Interactive music rehearsal or performances require high quality and extremely low

latency.
• Even for one way end-2-end delays > 5 ms, som music is hard to play.
• A good solution is JackTrip from CCRMA Stanford 

(no data compression and no efficient solutions towards packet losses)



Motivation and key challenges for music over networks
• Many wireless channels suffer from packet losses – e.g., 5% losses.
• Even wired communications over the internet suffers from jitter, especially when driving the 

communications near the minimal possible practical latency.
• In music performances both lost and late packets are ”lost”.
• Re-transmissions add latency – and require a feedback channel.
• The playback rate needs to be stable (nearly constant).
• To ensure this, a jitter (playback) buffer is used, which stores a number of packets before being

played out. 
• The delay is therefore proportional to the number of packets stored in the buffer.
• Packet-loss concealment methods are mainly helpful when interpolating between short gaps and 

not extrapolating into the future.

Key challenges addressed in this work:
1. very low delay high-quality audio coding
2. robustness to packet losses and packet jitter without introducing further delay



Multiple description audio coding

• There are many ways to construct multiple descriptions but less work has applied it to audio 
coding: (this list is not exhaustive)

• Multiple description perceptual audio coding with correlating transform. 
Kovacevic, V.K. Goyal. IEEE Trans. Speech and Audio Processing, 2000.

• Robust low-delay audio coding using multiple descriptions.
G. Schuller, J. Kovacevic, F. Masson, V.K. Goyal. IEEE Trans. Speech and Audio Processing, 2005.

• Perceptual audio coding using n-channel lattice vector quantization.
J. Østergaard, O. Niamut, J. Jensen, R. Heusdens. IEEE ICASSP 2006.

• Multiple description coding for an mp3 coded sound signal. H. Wey, A. Ito, T. Okamoto, Y. Suzuki. ICA 
2010.

• Real-time perceptual moving-horizon multiple-description audio coding. J. Østergaard, D.E. Quevedo, J. 
Jensen. IEEE Trans. Signal Processing. 2011.

• Practical design of delta-sigma multiple-description audio coding. 
J. Leegaard, J. Østergaard, S.H. Jensen, R. Zamir. EURASIP Journal on audio, speech, and music. 2014.



Delta sigma quantization

• In delta-sigma quantization, the source is oversampled

• Consider a white Gaussian source
• Upsample by a factor of 2

• The resulting spectrum covers half the frequency band
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Fig. 2. Dithered Delta–Sigma quantization.

A. Preliminaries: Entropy-Coded Dithered Quantization

Before introducing our dithered Delta–Sigma quantization
system, let us recall the properties of entropy-coded dithered
(lattice) quantization (ECDQ) [26]. ECDQ relies upon subtrac-
tive dither; see Fig. 1. For an -dimensional input vector , the
ECDQ output is given by , where
denotes an -dimensional lattice quantizer with Voronoi cells
[27]. The dither vector , which is known to both the encoder
and the decoder, is independent of the input signal and previous
realizations of the dither, and is uniformly distributed over the
basic Voronoi cell of the lattice quantizer. It follows that the
quantization error

(1)

is statistically independent of the input signal. Furthermore,
is an i.i.d.-vector process, where each -block is uniformly dis-
tributed over the mirror image of the basic cell of the lattice,
i.e., as . In particular, it follows that is a zero-mean white
vector with variance [26], [28].

The average code length of the quantized variables is given
by the conditional entropy of the quantizer

, where the conditioning is with respect to the dither vector
. It is known that this conditional entropy is equal to the mu-

tual information over the additive noise channel
where (the channel’s noise) is distributed as ; see [26] for
details. The coding rate (per -block) of the quantizer is there-
fore given by

(2)

where denotes the mutual information and denotes
the differential entropy. If subsequent quantizer outputs are en-
tropy-coded jointly, then we must change the blockwise mutual
information in the rate formula (2) to the joint mutual informa-
tion between input–output sequences (if there is no feedback)
[26], or to the directed mutual information (if there is feedback)
[29], [30].

If the source is white Gaussian, then the coding rate (2),
normalized per-sample, is upper-bounded by

(3)

where is the dimensionless normalized second moment
of the -dimensional lattice quantizer [27]. In the second
equality, is the total distortion after a suitable post-filter

Fig. 3. The power spectrum of (a) the input signal and (c) the oversampled
signal. (b) illustrates the oversampling process where the input signal is first
up-sampled by two and then filtered by an ideal half-band lowpass filter.

(multiplier) and is the rate–distortion function of the
white Gaussian source ; see [31]. The quantity is the
space-filling loss of the quantizer and is the
divergence of the quantization noise from Gaussianity. It fol-
lows that it is desirable to have Gaussian distributed quantization
noise in order to make as small as possible and thereby drive
the rate of the filtered quantizer towards . Fortunately,
it is known that there exists lattices where as

; the quantization noise of such quantizers is white, and
becomes asymptotically (in dimension) Gaussian distributed in
the divergence sense [28].

B. Delta–Sigma ECDQ

We are now ready to introduce our dithered Delta–Sigma
quantization system. We begin with the single-description case
which is sketched in Fig. 2.7 The MD case will be discussed
in Section III. The input sequence is first oversampled by a
factor of two to produce the oversampled sequence . It fol-
lows that is a redundant representation of the input sequence ,
which can be obtained simply by inserting a zero between every
sample of and applying an interpolating (ideal lowpass) filter

. For a wide-sense stationary input process , the resulting
oversampled signal would be wide-sense stationary, with the
same variance as the input, and the same power-spectrum only
squeezed to half the frequency band as shown in Fig. 3. In par-
ticular, a white Gaussian input becomes a half-band low-pass
Gaussian process with

(4)

7The Delta–Sigma quantization system shown in Fig. 2 is a discrete-time ver-
sion of the general noise-shaping coder presented in [32]. The system has an
equivalent form where the feedback is first subtracted and this difference is then
filtered [32].
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(multiplier) and is the rate–distortion function of the
white Gaussian source ; see [31]. The quantity is the
space-filling loss of the quantizer and is the
divergence of the quantization noise from Gaussianity. It fol-
lows that it is desirable to have Gaussian distributed quantization
noise in order to make as small as possible and thereby drive
the rate of the filtered quantizer towards . Fortunately,
it is known that there exists lattices where as

; the quantization noise of such quantizers is white, and
becomes asymptotically (in dimension) Gaussian distributed in
the divergence sense [28].

B. Delta–Sigma ECDQ

We are now ready to introduce our dithered Delta–Sigma
quantization system. We begin with the single-description case
which is sketched in Fig. 2.7 The MD case will be discussed
in Section III. The input sequence is first oversampled by a
factor of two to produce the oversampled sequence . It fol-
lows that is a redundant representation of the input sequence ,
which can be obtained simply by inserting a zero between every
sample of and applying an interpolating (ideal lowpass) filter

. For a wide-sense stationary input process , the resulting
oversampled signal would be wide-sense stationary, with the
same variance as the input, and the same power-spectrum only
squeezed to half the frequency band as shown in Fig. 3. In par-
ticular, a white Gaussian input becomes a half-band low-pass
Gaussian process with
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7The Delta–Sigma quantization system shown in Fig. 2 is a discrete-time ver-
sion of the general noise-shaping coder presented in [32]. The system has an
equivalent form where the feedback is first subtracted and this difference is then
filtered [32].

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on January 27,2021 at 06:22:19 UTC from IEEE Xplore.  Restrictions apply. 

Multiple-Description Coding by Dithered Delta Sigma Quantization.
J. Østergaard, R. Zamir, IEEE Data Compression Conference, 2007.



Delta sigma quantization
• After upsampling, closed-loop quantization takes place

• The quantization noise covers the full spectrum and is white before being shaped.
• The quantization noise is shaped by a noise-shaping filter, which reduces the energy of the in-

band noise spectrum.
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Fig. 4. The dithered quantizer is replaced by the additive noise model.

At the other end of the system, we apply an anti-aliasing filter
, i.e., an ideal half-band lowpass filter, and down-sample

by two in order to get back to the original sampling rate.
We would like to emphasize that the dithered Delta–Sigma

quantization scheme is not limited to oversampling ratios of
two. In fact, arbitrary (even fractional) oversampling ratios may
be used. This option is discussed further in Section VII.

The oversampled source sequence is combined with noise
feedback , and the resulting signal is sequentially quantized
on a sample-by-sample basis using a dithered quantizer. For
simplicity of exposition, we shall momentarily assume scalar
quantization, i.e., . The extension to is discussed in
Section II-C. The quantization error of the th sample, given
for a general ECDQ by (1), is fed back through the (causal) filter

and combined with the next source sample
to produce the next ECDQ input . Thus, the output of

the quantizer can be written as

(5)

where or equivalently

As explained above, the additive noise model is exact for
ECDQ and we can therefore represent the quantization opera-
tion as an additive noise channel, as shown in Fig. 4. In view of
this linear model, the equivalent reconstruction error in the over-
sampled domain, denoted in (5), is statistically independent
of the source. Thus, we call the “equivalent noise.” Notice
that is obtained by passing the quantization error through
the equivalent th-order noise-shaping filter

(6)

where so that . Since the quantization
error of the ECDQ (1) is white with variance , it follows
that the equivalent noise spectrum is given by

(7)

The fact that the output is obtained by passing the quanti-
zation error through the noise-shaping filter and adding
the result to the input can be illustrated using an equivalent
additive noise channel as shown in Fig. 5.

We may view the feedback filter as if its purpose is to
predict the “in-band” noise component of based on the past

quantization error samples (at the ex-
pense of possibly increasing the “out-of-band” noise compo-
nent). The end result is that the equivalent noise spectrum (7)
is shaped away from the in-band part of the spectrum, i.e., from

Fig. 5. The equivalent additive noise channel: The output is obtained by
passing the quantization error through the noise-shaping filter and
adding the result to the input .

Fig. 6. Illustrated on the left is the case where there is no feedback and the quan-
tization noise is therefore flat (in fact, white) throughout the entire frequency
range. On the right, an example of noise shaping is illustrated. The grey-shaded
areas illustrate the power spectra of the noise and the hatched areas illustrate the
power spectra of the source.

the frequency range , as shown in Fig. 6. Notice
that due to the anti-aliasing filter , only the in-band noise
determines the overall system distortion. The exact guidelines
for this noise shaping are different in the single- and the mul-
tiple-description cases, and will become clear in the sequel.

As previously mentioned, if we encode the quantizer output
symbols independently, then the rate of the ECDQ is given
by the mutual information between the input and the output of
the quantizer. Thus, the rate (per sample) is given by

(8)

where is independent of the present and past samples of
by the dithered quantization assumption. If and were
Gaussian, as discussed in Section II-C below, then we could get

(9)

where denotes the variance of the random variable .
At high-resolution conditions, the variance of the error signal
(and therefore of ) is small compared to the source, so by (4)
we have which implies that (9) becomes

(10)

where in (10) is in the sense that the difference between both
sides of the equation go to zero as . We can now com-
bine (10) with the expression (7) for the noise spectrum to obtain
a simple overall rate–distortion characterization of the system.
It can be observed that the resulting curve depends on
both the in-band and the out-of-band noise components.

If we apply joint entropy coding of the quantizer outputs, that
is, we let the entropy coder take advantage of the memory inside
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Fig. 8. Two-channel MD coding based on dithered Delta–Sigma quantization: Encoder.

Fig. 9. Two-channel MD coding based on dithered Delta–Sigma quantization:
Decoder.

At the decoder, if both descriptions are received, then they
are interlaced to form back the oversampled signal , an anti-
aliasing filter (i.e., an ideal half-band lowpass filter) is
applied and the signal is then down-sampled by two and scaled
by as shown in Fig. 9. If only the even samples are received,
we simply scale the signal by . On the other hand, if only the
odd samples are received, we first apply an all-pass filter
to correct the phase of the second description and then scale by

. The all-pass filter is needed because the up-sampling
operation performed at the encoder, i.e., up-sampling by two
followed by ideal lowpass filtering (sinc-interpolation), shifts
the phase of the odd samples. The post multipliers and are
described in Section IV-C.

The distortion due to reconstructing using both descriptions
is traditionally called the central distortion and the distortion
due to reconstructing using only a single description is called
the side distortion .

B. The Symmetric MD Rate–Distortion Region

We will need the solution to the quadratic (memoryless)
Gaussian MD problem, as proven by Ozarow [3], in the sym-
metric case, i.e., when both descriptions have the same rate

and the side distortions are equal. The set of achievable
distortions for description rate is the union of all distortion
pairs satisfying

(13)

and

(14)

where and and where
we require to avoid degenerate cases.

Based on the results of [3], it was shown in [33] that at high
resolution, for fixed central-to-side distortion ratio , the
product of the central and side distortions of an optimal two-
channel MD scheme approaches

(15)

where the approximation here is in the sense that the ratio
between both sides goes to as (or ). If

, i.e., at high side-to-central distortion ratio, this sim-
plifies to

(16)

C. Main Theorem

We now present the main theorem of this work, which basi-
cally states that the MD Delta–Sigma quantization scheme (pre-
sented in Section III-A) can asymptotically achieve the lower
bound of Ozarow’s MD distortion region (presented in Sec-
tion III-B).

Theorem 1: Asymptotically, as the noise-shaping filter
order and the vector-quantizer dimension are going to
infinity, the entropy rate and the distortion levels of the dithered
Delta–Sigma quantization scheme (of Figs. 8 and 9) with
optimum filters and lattice quantizer achieve the symmetric
two-channel MD rate–distortion function (13)–(14) for a
memoryless Gaussian source and MSE fidelity criterion, at
any side-to-central distortion ratio and any resolution.
Furthermore, the optimal infinite-order noise-shaping filter is
unique, minimum phase, and its magnitude spectrum
is piecewise flat with a single jump discontinuity at .

Before presenting the proof of the theorem, we provide in the
following sections a series of supporting lemmas. The proof of
the theorem can be found in Section V.

IV. ASYMPTOTIC CHARACTERIZATION AND PERFORMANCE

ANALYSIS

In this section, we concentrate on the asymptotic case where
, i.e., infinite noise-shaping filter order and infinite

vector quantizer dimension. For analysis purposes, this allows
us to assume Gaussian quantization noise in the system model
of Fig. 4, with arbitrarily shaped equivalent noise spectrum (7).

A. Frequency Interpretation of Delta–Sigma Quantization

We first give an intuitive frequency interpretation of the pro-
posed Delta–Sigma quantization scheme. This frequency inter-
pretation reveals that the role of the noise-shaping filter is not
simply to shape away the quantization noise from the in-band
spectrum, as is the case in traditional Delta–Sigma quantiza-
tion, but rather to delicately control the tradeoff between the
in-band noise versus the out-of-band noise, which translates into
a tradeoff between the central and side distortions. This tradeoff
is done while keeping the coding rate fixed, which, at least at
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Ideal noise shaping
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Fig. 10. The power spectrum of (a) the quantization noise and (b) the shaped
quantization noise. In (b) the energy of the lowpass noise spectrum (the bright
region) corresponds to the central distortion and the energy of the full spectrum
corresponds to the side distortion.

high resolution, is equivalent to keeping the quantizer variance
fixed. See (10).

Recall that we, at the central decoder, apply an anti-aliasing
filter (ideal lowpass filtering) before down-sampling. Hence,
the central distortion is given by the energy of the quantiza-
tion noise that falls within the in-band spectrum. The inclu-
sion of a noise-shaping filter at the encoder makes it possible
to shape away the quantization noise from the in-band spec-
trum and thereby reduce the central distortion. By increasing
the order of the noise-shaping filter it is possible to reduce the
central distortion accordingly.

It is also interesting to understand what influences the side
distortion. The side descriptions are constructed by using either
all odd samples or all even samples of the output . Hence, we
effectively down-sample by a factor of two. It is important
to see that this down-sampling process takes place without first
applying an anti-aliasing filter. Thus, aliasing is inevitable. It
follows, that not only the noise which falls within the in-band
spectrum contributes to the side distortion but also the noise that
falls outside the in-band spectrum (i.e., the out-of-band noise)
affects the distortion. Since, in traditional Delta–Sigma quanti-
zation, the noise is shaped away from the in-band spectrum as
efficiently as possible, the out-of-band noise is likely to be the
dominating contributor to the side distortion. We have illustrated
this in Fig. 10.

It should now be clear that, in two-channel MD Delta–Sigma
quantization, the role of the noise-shaping filter is to trade off the
in-band noise versus the out-of-band noise. In particular, in the
asymptotic case where the order of the noise-shaping filter goes
to infinity, it is possible to construct a brick-wall filter which has
a squared magnitude spectrum of in the passband (i.e., for

) and of in the stopband (i.e., for ).
In this case, the central distortion is proportional to whereas
the side distortion is proportional to . This situation,

which is illustrated in Fig. 10(b), will be discussed in more detail
in the next section.

B. Achieving the MD Distortion Product at High Resolution

It is possible to take advantage of the frequency interpreta-
tion given in Section IV-A in order to show that the optimum
central-side distortion product at high resolution (15) can be
achieved by Delta–Sigma quantization. We later extend this re-
sult and show that with suitable post-multipliers at the decoders,
optimum performance is achieved at any resolution.

Lemma 1: At high resolution and asymptotically as
, the distortion product given by (15) is achiev-

able by Delta–Sigma quantization.
Proof: The central distortion is equal to the total energy

of the in-band noise spectrum where

(17)

The side distortion is equal to the energy of the
in-band noise spectrum of the side descriptions which contains
aliasing due to the subsampling process. Since we down-sample
by two we have

(18)

Let us shape the noise spectrum as illustrated in Fig. 10(b).
Thus, we let for and
for where . It follows from (18) that,
for any , and from (17) we see that

which yields the distortion product

(19)

From (10) we know that at high resolution
(where is in the sense that the difference goes to zero as

), so that

(20)

(where is in the sense that the ratio goes to one as ).
Finally, since it follows that

(21)

and the lemma is proved by inserting (20) and (21) into (19) and
comparing the resulting expression to (15).

C. Optimum Performance for General Resolution

In this subsection, we extend the optimality result of Sec-
tion IV-B above, and show that the two-channel Delta–Sigma
quantization scheme achieves the symmetric quadratic Gaussian
rate–distortion function at any resolution.

Let denote the reconstructions before the side post-mul-
tipliers so that , and let denote the ex-
pectation operator. It can then be shown that
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• Using approximately ideal noise-shaping filters, the 
resulting noise spectrum is shaped like a two-step
function

• Splitting into even and odd samples, effectively
downsamples the signal without first using an anti-
aliasing filter

• The noise in each description is therefore aliased
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Fig. 8. Two-channel MD coding based on dithered Delta–Sigma quantization: Encoder.

Fig. 9. Two-channel MD coding based on dithered Delta–Sigma quantization:
Decoder.

At the decoder, if both descriptions are received, then they
are interlaced to form back the oversampled signal , an anti-
aliasing filter (i.e., an ideal half-band lowpass filter) is
applied and the signal is then down-sampled by two and scaled
by as shown in Fig. 9. If only the even samples are received,
we simply scale the signal by . On the other hand, if only the
odd samples are received, we first apply an all-pass filter
to correct the phase of the second description and then scale by

. The all-pass filter is needed because the up-sampling
operation performed at the encoder, i.e., up-sampling by two
followed by ideal lowpass filtering (sinc-interpolation), shifts
the phase of the odd samples. The post multipliers and are
described in Section IV-C.

The distortion due to reconstructing using both descriptions
is traditionally called the central distortion and the distortion
due to reconstructing using only a single description is called
the side distortion .

B. The Symmetric MD Rate–Distortion Region

We will need the solution to the quadratic (memoryless)
Gaussian MD problem, as proven by Ozarow [3], in the sym-
metric case, i.e., when both descriptions have the same rate

and the side distortions are equal. The set of achievable
distortions for description rate is the union of all distortion
pairs satisfying

(13)

and

(14)

where and and where
we require to avoid degenerate cases.

Based on the results of [3], it was shown in [33] that at high
resolution, for fixed central-to-side distortion ratio , the
product of the central and side distortions of an optimal two-
channel MD scheme approaches

(15)

where the approximation here is in the sense that the ratio
between both sides goes to as (or ). If

, i.e., at high side-to-central distortion ratio, this sim-
plifies to

(16)

C. Main Theorem

We now present the main theorem of this work, which basi-
cally states that the MD Delta–Sigma quantization scheme (pre-
sented in Section III-A) can asymptotically achieve the lower
bound of Ozarow’s MD distortion region (presented in Sec-
tion III-B).

Theorem 1: Asymptotically, as the noise-shaping filter
order and the vector-quantizer dimension are going to
infinity, the entropy rate and the distortion levels of the dithered
Delta–Sigma quantization scheme (of Figs. 8 and 9) with
optimum filters and lattice quantizer achieve the symmetric
two-channel MD rate–distortion function (13)–(14) for a
memoryless Gaussian source and MSE fidelity criterion, at
any side-to-central distortion ratio and any resolution.
Furthermore, the optimal infinite-order noise-shaping filter is
unique, minimum phase, and its magnitude spectrum
is piecewise flat with a single jump discontinuity at .

Before presenting the proof of the theorem, we provide in the
following sections a series of supporting lemmas. The proof of
the theorem can be found in Section V.

IV. ASYMPTOTIC CHARACTERIZATION AND PERFORMANCE

ANALYSIS

In this section, we concentrate on the asymptotic case where
, i.e., infinite noise-shaping filter order and infinite

vector quantizer dimension. For analysis purposes, this allows
us to assume Gaussian quantization noise in the system model
of Fig. 4, with arbitrarily shaped equivalent noise spectrum (7).

A. Frequency Interpretation of Delta–Sigma Quantization

We first give an intuitive frequency interpretation of the pro-
posed Delta–Sigma quantization scheme. This frequency inter-
pretation reveals that the role of the noise-shaping filter is not
simply to shape away the quantization noise from the in-band
spectrum, as is the case in traditional Delta–Sigma quantiza-
tion, but rather to delicately control the tradeoff between the
in-band noise versus the out-of-band noise, which translates into
a tradeoff between the central and side distortions. This tradeoff
is done while keeping the coding rate fixed, which, at least at
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Fig. 8. Two-channel MD coding based on dithered Delta–Sigma quantization: Encoder.

Fig. 9. Two-channel MD coding based on dithered Delta–Sigma quantization:
Decoder.

At the decoder, if both descriptions are received, then they
are interlaced to form back the oversampled signal , an anti-
aliasing filter (i.e., an ideal half-band lowpass filter) is
applied and the signal is then down-sampled by two and scaled
by as shown in Fig. 9. If only the even samples are received,
we simply scale the signal by . On the other hand, if only the
odd samples are received, we first apply an all-pass filter
to correct the phase of the second description and then scale by

. The all-pass filter is needed because the up-sampling
operation performed at the encoder, i.e., up-sampling by two
followed by ideal lowpass filtering (sinc-interpolation), shifts
the phase of the odd samples. The post multipliers and are
described in Section IV-C.

The distortion due to reconstructing using both descriptions
is traditionally called the central distortion and the distortion
due to reconstructing using only a single description is called
the side distortion .

B. The Symmetric MD Rate–Distortion Region

We will need the solution to the quadratic (memoryless)
Gaussian MD problem, as proven by Ozarow [3], in the sym-
metric case, i.e., when both descriptions have the same rate

and the side distortions are equal. The set of achievable
distortions for description rate is the union of all distortion
pairs satisfying

(13)

and

(14)

where and and where
we require to avoid degenerate cases.

Based on the results of [3], it was shown in [33] that at high
resolution, for fixed central-to-side distortion ratio , the
product of the central and side distortions of an optimal two-
channel MD scheme approaches

(15)

where the approximation here is in the sense that the ratio
between both sides goes to as (or ). If

, i.e., at high side-to-central distortion ratio, this sim-
plifies to

(16)

C. Main Theorem

We now present the main theorem of this work, which basi-
cally states that the MD Delta–Sigma quantization scheme (pre-
sented in Section III-A) can asymptotically achieve the lower
bound of Ozarow’s MD distortion region (presented in Sec-
tion III-B).

Theorem 1: Asymptotically, as the noise-shaping filter
order and the vector-quantizer dimension are going to
infinity, the entropy rate and the distortion levels of the dithered
Delta–Sigma quantization scheme (of Figs. 8 and 9) with
optimum filters and lattice quantizer achieve the symmetric
two-channel MD rate–distortion function (13)–(14) for a
memoryless Gaussian source and MSE fidelity criterion, at
any side-to-central distortion ratio and any resolution.
Furthermore, the optimal infinite-order noise-shaping filter is
unique, minimum phase, and its magnitude spectrum
is piecewise flat with a single jump discontinuity at .

Before presenting the proof of the theorem, we provide in the
following sections a series of supporting lemmas. The proof of
the theorem can be found in Section V.

IV. ASYMPTOTIC CHARACTERIZATION AND PERFORMANCE

ANALYSIS

In this section, we concentrate on the asymptotic case where
, i.e., infinite noise-shaping filter order and infinite

vector quantizer dimension. For analysis purposes, this allows
us to assume Gaussian quantization noise in the system model
of Fig. 4, with arbitrarily shaped equivalent noise spectrum (7).

A. Frequency Interpretation of Delta–Sigma Quantization

We first give an intuitive frequency interpretation of the pro-
posed Delta–Sigma quantization scheme. This frequency inter-
pretation reveals that the role of the noise-shaping filter is not
simply to shape away the quantization noise from the in-band
spectrum, as is the case in traditional Delta–Sigma quantiza-
tion, but rather to delicately control the tradeoff between the
in-band noise versus the out-of-band noise, which translates into
a tradeoff between the central and side distortions. This tradeoff
is done while keeping the coding rate fixed, which, at least at
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Fig. 8. Two-channel MD coding based on dithered Delta–Sigma quantization: Encoder.

Fig. 9. Two-channel MD coding based on dithered Delta–Sigma quantization:
Decoder.
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two-channel MD rate–distortion function (13)–(14) for a
memoryless Gaussian source and MSE fidelity criterion, at
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Furthermore, the optimal infinite-order noise-shaping filter is
unique, minimum phase, and its magnitude spectrum
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Before presenting the proof of the theorem, we provide in the
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us to assume Gaussian quantization noise in the system model
of Fig. 4, with arbitrarily shaped equivalent noise spectrum (7).

A. Frequency Interpretation of Delta–Sigma Quantization

We first give an intuitive frequency interpretation of the pro-
posed Delta–Sigma quantization scheme. This frequency inter-
pretation reveals that the role of the noise-shaping filter is not
simply to shape away the quantization noise from the in-band
spectrum, as is the case in traditional Delta–Sigma quantiza-
tion, but rather to delicately control the tradeoff between the
in-band noise versus the out-of-band noise, which translates into
a tradeoff between the central and side distortions. This tradeoff
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Figure 5 Schematics of the complete MD noise-shaped predictive encoder [14,15].

a similar way. Thus, the even samples then constitute one
of the packets in the MD coder, and the odd samples con-
stitute the other packet. The number of samples to include
in each packet depends upon several factors and will be
treated in the sequel.

3.2.1 Linear predictive coding
The encoders will in this work be given by forward lin-
ear prediction coding. In particular, in order to encode the
even signal zeven(n), we design a linear predictor based on
the even unquantized samples zeven(n). We use a forward
linear predictor, which as usual is obtained by minimiz-
ing the prediction error in the least squares sense, cf. [23]
for details. The predictor performs closed-loop predic-
tion, i.e., the quantizer is contained within the prediction
loop [19]. To do so, we consider a block of samples and
use these for estimating the prediction filter. The filter
needs to be encoded and transmitted to the decoder. Thus,
there is a trade-off between the rate required for coding
the filter coefficients, the update rate of the filter, and the
rate required for coding the prediction error. A general
approach to choosing a proper rate distribution between
model parameters and signal was considered in [24].

3.2.2 Coding the prediction error
Even though the prediction filters are updated only once
per block of samples, quantization of the prediction error
is performed on a sample-by-sample basis. Thus, we need
to use scalar quantization, and for simplicity, we will use
scalar uniform quantization [25]. We therefore only need
to design the proper step-size ! of the quantizer. To
obtain the bitrates of the coder, we first run the predic-
tor using a fixed step size ! on a large data set of mixed
audio having a sampling frequency of 48 kHz. Then, a
scalar (Huffman) entropy coder is designed on the quan-
tized output of the predictor [26]. Thus, we are using a

static and memoryless entropy coder. Finally, the predic-
tor is tested on an audio segment (in this case, it consists
of jazz music), which is not part of the training material.
Figure 6 shows the resulting coding rate due to using a
scalar uniform quantizer with a step-size ! followed by a
scalar (Huffman) entropy coder. The corresponding MSE
due to changing the step size of the quantizer is shown
in Figure 7. In these simulations, we update the two lin-
ear predictive coding (LPC) filters once in each block of
128 samples. Since the audio signals have a sampling fre-
quency of 48 khz, then if the bitrate is say 5 bits/sample,
the resulting rate for coding the prediction error is 240
kbps per packet.

3.2.3 Predictor order
In predictive audio coding, it is common to use predictors
of orders greater than 10 [6]. However, in our case, the

Figure 6 Bitrates due to forward linear prediction followed by
encoding of the prediction error.

• For sources with memory, we replace the quantizer by 
a DPCM loop (closed-loop predictive quantization)

• We have two inner predictive quantization loops and 
one outer noise-shaping loop

Noise-Shaped Predictive Coding for Multiple Descriptions
of a Colored Gaussian Source. 
Y. Kochman, J. Østergaard, R. Zamir. IEEE Data Compression Conference, 2008.

The DPCM loop can actually also be existing audio coders



Many descriptions by fractional sampling> _1SG�*1 h>Aa GAL1 qAh> uPl_ S�S1_ A.1LhA6A*�hAPL LlJ"1_ < 9

x(n)
↑ L H(z)

xup(n)
+

z(m)

z1(n′)
1M+Q/2` 1

y1(n′)
1Mi`QTv +Q/2` 1

S�+F2i 1
.2+Q/2` 1

+
−

e1(n′)

zK(n′)
1M+Q/2` K

yK(n′)
1Mi`QTv +Q/2` K

S�+F2i K
+

−

eK(n′)

.2+Q/2` K

C(z)

e(m)

e1(n′) eK(n′)

6B;X RX K /2b+`BTiBQM .aZ 2M+Q/2` ?�pBM; L iBK2b mTb�KTHBM;X 1�+? 2M+Q/2` +QMbBbib Q7 � +HQb2/@HQQT .S*J [m�MiBx2` �b b?QrM BM 6B;X kX

zi(n′)
+ Zm�MiBx2`

yi(n′)

+A(z)

−

6B;X kX 1M+Q/2` iX *HQb2/@HQQT .S*J [m�MiBx�iBQM i?�i 7Q`Kb i?2
ii? BMM2` HQQTX

y1(n′)

yK(n′)

.2+Q/2`
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• Upsample by L ≥ 2
• Create K >= L descriptions
• Perform closed-loop (DPCM) 

quantization in each inner loop
• Perform one outer loop with 

noise shaping
• Perform decoding from arbitrary

subsets of descriptions



Key research questions

• Balanced descriptions: Can we guarantee that the distortion only depends
upon the number of received descriptions and not which?
• Fractional under-sampling: Is it advantageous to choose K<L
• Decoder: How do we reconstruct from a given subset of descriptions?



Distortion of different subsets of descriptions – a noise shaping strategy
• Assume we upsample a white Gaussian source X by L=5

• Let N be white Gaussian noise

• Let Y1 = X + N1, and Y2 = X + N2
• Use any two descriptions (out of 5)
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b�KTHBM; `�i2 UBX2X- πsV- i?2 KBMBKmK Ja1 /Q2b MQi
/2T2M/ QM i?2 bm#b2i Q7 /2b+`BTiBQMbX AM Qm` +�b2- N2

Bb +H2�`Hv MQM r?Bi2X >Qr2p2`- BM i?2 ?B;?@7`2[m2M+v T�`i-
BX2X- 5

2πs ≥ |ω| ≥ 1
2πs- i?2 bT2+i`mK Q7 N2 Bb �TT`QtBK�i2Hv

r?Bi2X PM i?2 Qi?2` ?�M/- i?2 bT2+i`mK Q7 N1 Bb MQM
r?Bi2 7Q` � H�`;2 TQ`iBQM Q7 �HbQ i?2 ?B;?2` 7`2[m2M+B2bX
h?Bb 2t�KTH2 /2KQMbi`�i2b- i?�i Bi Bb bm{+B2Mi iQ ?�p2
�TT`QtBK�i2Hv r?Bi2 MQBb2 BM i?2 ?B;?@7`2[m2M+v T�`i Q7
i?2 bT2+i`mK- r?2`2 �HB�bBM; i�F2b TH�+2- BM Q`/2` iQ Q#i�BM
M2�`Hv B/2MiB+�H Ja1 /BbiQ`iBQMb- BM/2T2M/2MiHv Q7 i?2
T�`iB+mH�` bm#b2ib Q7 b�KTH2bX h?Bb ;`2�iHv bBKTHB}2b i?2
/2bB;M Q7 i?2 MQBb2@b?�TBM; }Hi2` 7Q` 7`�+iBQM�H b�KTHBM;
7Q` L %= KX

1X .2+Q/2`

�bbmK2 i?�i i?2 ii? /2b+`BTiBQM +QMi�BMBM; B b�KTH2b
Q7 i?2 [m�MiBx2/ `2bB/m�H yi(n′) Bb `2+2Bp2/X h?2 T�+F2i Bb
2Mi`QTv /2+Q/2/ iQ Q#i�BM yi(n′) �M/ i?2 T`2/B+iQ` Â(z)X
h?2M- �M 2biBK�i2 ẑi(n′) Q7 BMTmi zi(n′) iQ i?2 2M+Q/2` Bb
Q#i�BM2/ #v BMp2`b2 }Hi2`BM; yi(n′) mbBM; Â−1(z)X 6BM�HHv-
�M 2biBK�i2 x̂i(n) Q7 x(n) Bb Q#i�BM2/ #v `2b�KTHBM; ẑi(n′)
�i i?2 7`�+iBQM�H `�i2 K/LX LQi2 i?�i B7 L = K- i?2M i?2
`2b�KTHBM; QT2`�iBQM Bb bBKTHv Dmbi � T?�b2@b?B7i iQ K�F2
bm`2 i?�i x̂i(n) Bb iBK2@�HB;M2/ rBi? i?2 bQm`+2 x(n)X

�V Ja1 .2+Q/2`, G2i i?2 `2+2Bp2/ /2b+`BTiBQMb #2
BM/2t2/ #v I ⊆ {1, . . . ,K}X A7 L = K- r2 }`bi 7Q`K x̂i(n)
7Q` �HH i ∈ I- �M/ i?2M r2 mb2 � bBKTH2 �p2`�;2 �b i?2

> _1SG�*1 h>Aa GAL1 qAh> uPl_ S�S1_ A.1LhA6A*�hAPL LlJ"1_ < 8

hQ 2Hm+B/�i2 i?2 MQBbv bBim�iBQM- r2 +QMbi`m+i irQ MQBbv
bB;M�Hb- Y1 = Y + N1 �M/ Y2 = Y + N2- 2�+? ?�pBM; �
b�KTHBM; 7`2[m2M+v Q7 πLX h?2 MQBb2 N1- +QMbBbib Q7 r?Bi2
:�mbbB�M MQBb2- r?B+? ?�b #22M }Hi2`2/ #v i?2 }`bi@Q`/2`
6A_ ?B;?@T�bb }Hi2` C1(z) ;Bp2M #v,

c1 = [1,−0.6200]. UjV

h?2 MQBb2 N2- Bb r?Bi2 :�mbb�M MQBb2 }Hi2`2/ #v i?2 Ryth
Q`/2` 6A_ ?B;?@T�bb }Hi2` c2(z) ;Bp2M #v,k

c2 = [1.0000,−0.4685,−0.2586,−0.0735, 0.0520, U9V
0.1040, 0.0909, 0.0385,−0.0200,−0.0557,−0.0526].

h?2 MQBb2 bB;M�Hb �`2 MQ`K�HBx2/ iQ mMBi p�`B�M+2- �M/ i?2B`
TQr2` bT2+i`� 7Q` TQbBiBp2 7`2[m2M+B2b �`2 b?QrM BM 6B;X 9X
Ai K�v #2 MQiB+2/ i?�i #Qi? MQBb2 bB;M�Hb ?�p2 KQbi Q7
i?2B` 2M2`;v �i i?2 ?B;?2` 7`2[m2M+B2b- �M/ i?�i i?2 Qmi@Q7@
#�M/ T�`i- BX2X- i?2 ?B;?@7`2[m2M+v T�`i U∀ω ∈ [ 12πs,

5
2πs]V-

Q7 i?2 bT2+i`mK Q7 N2 Bb KQ`2 ~�i i?�M i?�i Q7 N1X

0 1 2 3 4 5 6 7
Frequency (radians)

-38

-36

-34

-32

-30

-28

-26

-24

dB

N1
N2

6B;X 9X SQr2` bT2+i`�H /2MbBiB2b 7Q` r?Bi2 :�mbbB�M MQBb2 }Hi2`2/ #v
c1 UjV �M/ c2 U9VX

A7 r2 MQr /QrMb�KTH2 Y1 #v QMHv F22TBM; k Qmi Q7 2p2`v
8 b�KTH2b BM � `2T2�iBM; UT2`BQ/B+V T�ii2`M- i?2 `2bmHiBM;
�p2`�;2 b�KTHBM; 7`2[m2M+v rBHH #2 2

5πL = 2πsX E22TBM;
QMHv b�KTH2 i �M/ j- 7Q` 1 ≤ i, j ≤ 5, i %= j- BM 2�+? MQM@
Qp2`H�TTBM; #HQ+F Q7 8 b�KTH2b- +�M #2 r`Bii2M �b,

Y (i,j)
1 = {Y1(#) : i = mod (#, 5) Q` j = mod (#, 5), ∀#}.

U8V
_2+�HH i?�i Y1 +QMbBbib Q7 i?2 bmK Q7 Y �M/ N1- �M/ i?�i

Y QMHv ?�b bmTTQ`i BM [− 1
2πs,

1
2πs]- r?2`2�b i?2 b?�T2/

MQBb2 Y1 ?�b bmTTQ`i BM [− 5
2πs,

5
2πs]X q?BH2 Y rBHH MQi

bmz2` 7`QK �HB�bBM;- Bi Bb +H2�` i?�i N1 rBHH bmz2` 7`QK
�HB�bBM;X h?2 `2bmHiBM; �p2`�;2 b�KTHBM; 7`2[m2M+v /m2 iQ
/QrMb�KTHBM; Bb BM/2T2M/2Mi Q7 r?B+? k Qmi Q7 8 b�KTH2b
�`2 #2BM; F2TiX 6Q` 2t�KTH2- Y (1,2)

1 F22Tb i?2 }`bi irQ
b�KTH2b BM 2�+? +QMb2+miBp2 UMQM@Qp2`H�TTBM;V #HQ+F Q7 8

kh?2 }Hi2`b c1 �M/ c2 �`2 i?2 mMB[m2 KBMBKmK T?�b2 }Hi2`b-
r?B+? 7Q` i?2 ;Bp2M }Hi2` Q`/2`b- �M/ BM � H2�bi@b[m�`2b b2Mb2- #2bi
�TT`QtBK�i2 i?2 bT2+i`mK SN ;Bp2M BM UkVX

b�KTH2b Q7 Y1X PM i?2 Qi?2` ?�M/- Y (1,3)
1 F22Tb b�KTH2 R

�M/ j BM 2p2`v #HQ+F Q7 8 b�KTH2bX lbBM; QTiBK�H HBM2�`
2biBK�iBQM Q7 +v+HQ@bi�iBQM�`v :�mbbB�M T`Q+2bb2b (jk)- r2
?�p2 BM h�#H2 AAA b?QrM i?2 `2bmHiBM; Ja1 UBM /"V- r?2M
2biBK�iBM; X 7`QK i?2 7`�+iBQM�H /QrMb�KTH2/ Y1 mbBM;
�HH TQbbB#H2 bm#b2ib {Y (i,j)

1 } i?�i H2�/ iQ F22TBM; k b�KTH2b
Qmi Q7 2p2`v #HQ+F Q7 8 b�KTH2bX Ai +�M b22M i?�i 7Q` i?2
+�b2 Q7 Y1- i?2 `2bmHiBM; /BbiQ`iBQM bB;MB}+�MiHv /2T2M/b
mTQM i?2 b�KTHBM; T�ii2`MX PM i?2 Qi?2` ?�M/- r?2M r2
`2T2�i i?2 bBKmH�iBQM 7Q` i?2 +�b2 Q7 Y2- i?2 /BbiQ`iBQM
/Bz2`b #v H2bb i?�M yXk /" #2ir22M i?2 /Bz2`2Mi bm#b2ibX
h?mb- Y2 Bb H2bb b2MbBiBp2 iQ r?B+? bm#b2i Q7 /2b+`BTiBQMb
i?�i �`2 `2+2Bp2/X

h�"G1 AAA
h?2 `2bmHiBM; Ja1 UBM /"V /m2 iQ `2+QMbi`m+iBM; i?2 bQm`+2 X
7`QK Y1 �M/ Y2 �7i2` 7`�+iBQM�H /QrMb�KTHBM; �i i?2 `�i2 Q7 5

2 -
r?B+? `2bmHib BM Y

(i,j)
1 �M/ Y

(i,j)
2 - `2bT2+iBp2HvX

am#b2ib (i, j) R-k R-8 k-j j-9 9-8
Y

(i,j)
1 , @8Xjd @8Xj3 @8Xj8 @8XjR @8Xj9

Y
(i,j)
2 , @9XRe @9XR3 @9XR8 @9XRR 9Xyy

am#b2ib (i, j) R-j R-9 k-9 k-8 j-8
Y

(i,j)
1 , @jXyk @jXyk @jXyR @jXyk @jXyk

Y
(i,j)
2 , @9Xyy @9Xyy @9Xyy @9Xyy @9Xyy

Ai r�b b?QrM BM (jk) i?�i 7Q` r?Bi2 �//BiBp2 MQBb2-
�M/ r?2M mbBM; � b�KTHBM; 7`2[m2M+v �#Qp2 i?2 Lv[mBbi
b�KTHBM; `�i2 UBX2X- πsV- i?2 KBMBKmK Ja1 /Q2b MQi
/2T2M/ QM i?2 bm#b2i Q7 /2b+`BTiBQMbX AM Qm` +�b2- N2

Bb +H2�`Hv MQM r?Bi2X >Qr2p2`- BM i?2 ?B;?@7`2[m2M+v T�`i-
BX2X- 5

2πs ≥ |ω| ≥ 1
2πs- i?2 bT2+i`mK Q7 N2 Bb �TT`QtBK�i2Hv

r?Bi2X PM i?2 Qi?2` ?�M/- i?2 bT2+i`mK Q7 N1 Bb MQM
r?Bi2 7Q` � H�`;2 TQ`iBQM Q7 �HbQ i?2 ?B;?2` 7`2[m2M+B2bX
h?Bb 2t�KTH2 /2KQMbi`�i2b- i?�i Bi Bb bm{+B2Mi iQ ?�p2
�TT`QtBK�i2Hv r?Bi2 MQBb2 BM i?2 ?B;?@7`2[m2M+v T�`i Q7
i?2 bT2+i`mK- r?2`2 �HB�bBM; i�F2b TH�+2- BM Q`/2` iQ Q#i�BM
M2�`Hv B/2MiB+�H Ja1 /BbiQ`iBQMb- BM/2T2M/2MiHv Q7 i?2
T�`iB+mH�` bm#b2ib Q7 b�KTH2bX h?Bb ;`2�iHv bBKTHB}2b i?2
/2bB;M Q7 i?2 MQBb2@b?�TBM; }Hi2` 7Q` 7`�+iBQM�H b�KTHBM;
7Q` L %= KX

1X .2+Q/2`

�bbmK2 i?�i i?2 ii? /2b+`BTiBQM +QMi�BMBM; B b�KTH2b
Q7 i?2 [m�MiBx2/ `2bB/m�H yi(n′) Bb `2+2Bp2/X h?2 T�+F2i Bb
2Mi`QTv /2+Q/2/ iQ Q#i�BM yi(n′) �M/ i?2 T`2/B+iQ` Â(z)X
h?2M- �M 2biBK�i2 ẑi(n′) Q7 BMTmi zi(n′) iQ i?2 2M+Q/2` Bb
Q#i�BM2/ #v BMp2`b2 }Hi2`BM; yi(n′) mbBM; Â−1(z)X 6BM�HHv-
�M 2biBK�i2 x̂i(n) Q7 x(n) Bb Q#i�BM2/ #v `2b�KTHBM; ẑi(n′)
�i i?2 7`�+iBQM�H `�i2 K/LX LQi2 i?�i B7 L = K- i?2M i?2
`2b�KTHBM; QT2`�iBQM Bb bBKTHv Dmbi � T?�b2@b?B7i iQ K�F2
bm`2 i?�i x̂i(n) Bb iBK2@�HB;M2/ rBi? i?2 bQm`+2 x(n)X

�V Ja1 .2+Q/2`, G2i i?2 `2+2Bp2/ /2b+`BTiBQMb #2
BM/2t2/ #v I ⊆ {1, . . . ,K}X A7 L = K- r2 }`bi 7Q`K x̂i(n)
7Q` �HH i ∈ I- �M/ i?2M r2 mb2 � bBKTH2 �p2`�;2 �b i?2

> _1SG�*1 h>Aa GAL1 qAh> uPl_ S�S1_ A.1LhA6A*�hAPL LlJ"1_ < 9

x(n)
↑ L H(z)

xup(n)
+

z(m)

z1(n′)
1M+Q/2` 1

y1(n′)
1Mi`QTv +Q/2` 1

S�+F2i 1
.2+Q/2` 1

+
−

e1(n′)

zK(n′)
1M+Q/2` K

yK(n′)
1Mi`QTv +Q/2` K

S�+F2i K
+

−

eK(n′)

.2+Q/2` K

C(z)

e(m)

e1(n′) eK(n′)

6B;X RX K /2b+`BTiBQM .aZ 2M+Q/2` ?�pBM; L iBK2b mTb�KTHBM;X 1�+? 2M+Q/2` +QMbBbib Q7 � +HQb2/@HQQT .S*J [m�MiBx2` �b b?QrM BM 6B;X kX

zi(n′)
+ Zm�MiBx2`

yi(n′)

+A(z)

−

6B;X kX 1M+Q/2` iX *HQb2/@HQQT .S*J [m�MiBx�iBQM i?�i 7Q`Kb i?2
ii? BMM2` HQQTX

y1(n′)

yK(n′)

.2+Q/2`
ẑ(m)

H(z) ↓ L
x̂(n)

6B;X jX .2+Q/2`

i?2 b?�T2/ [m�MiBx�iBQM MQBb2 E(z)C(z)- +Qp2` i?2 7mHH
7`2[m2M+v bT2+i`mK Q7 i?2 Qp2`b�KTH2/ bB;M�HX h?mb- i?2
b?�T2/ [m�MiBx�iBQM MQBb2 bmz2`b 7`QK �HB�bBM;- �M/ i?2
?B;?@7`2[m2M+v MQBb2 rBHH i?2`2#v #2 KB``Q`2/ �M/ bmT2`@
BKTQb2/ QMiQ i?2 bmK Q7 i?2 HQr@7`2[m2M+v MQBb2 �M/ i?2
bQm`+2 bT2+i`mKX h?2 +?QB+2 Q7 MQBb2 b?�TBM; Bb i?2`27Q`2
BKTQ`i�MiX

6Q` i?2 +�b2 Q7 L = K = 2 �M/ �`#Bi`�`BHv +QHQ`2/
:�mbbB�M bQm`+2b- i?2 QTiBK�H bT2+i`mK SN (ω) Q7 i?2
b?�T2/ MQBb2 �M/ i?2 +Q``2bTQM/BM; MQBb2 b?�TBM; }Hi2`
C(z) r2`2 7QmM/ BM (k3)X h?2 MQBb2 bT2+i`mK Q7 i?2 b?�T2/
MQBb2 i�F2b � +QKTHB+�i2/ 7Q`K- r?B+? ;2M2`�HHv /2T2M/b
mTQM i?2 bQm`+2 bT2+i`mKX �i ?B;? `2bQHmiBQM- r?2M i?2
+Q/BM; `�i2 �bvKTiQiB+�HHv i2M/b iQ BM}MBiv- Bi r�b b?QrM
i?�i i?2 MQBb2 bT2+i`mK #2+QK2b BM/2T2M/2Mi Q7 i?2 bQm`+2
bT2+i`mK- �M/ +QMbBbib Q7 � irQ@bi2T TB2+2@rBb2 HBM2�`
7mM+iBQM i?�i Bb 2[mBp�H2Mi iQ i?2 QTiBK�H MQBb2 bT2+i`mK
7Q` � r?Bi2 :�mbbB�M bQm`+2 (jy)X

6Q` i?2 +�b2 Q7 L = K ≥ 2 /2b+`BTiBQMb- �M/ B7 r2 �`2
QMHv BMi2`2bi2/ BM i?2 /BbiQ`iBQM /m2 iQ `2+2BpBM; � bBM;H2
/2b+`BTiBQM Q` `2+2BpBM; �HH K /2b+`BTiBQMb- i?2 QTiBK�H
MQBb2 bT2+i`mK 7Q` i?2 r?Bi2 :�mbbB�M bQm`+2 r�b b?QrM
BM (ky) iQ #2 � bBKTH2 2ti2MbBQM Q7 i?�i 7Q` irQ /2b+`BTiBQMb
;Bp2M BM (jy)X aT2+B}+�HHv- i?2 QTiBK�H MQBb2 bT2+i`mK Bb
;Bp2M #v,

SN (ω) =

{
δ1−K , |ω| ≤ πL

K ,

δ, π > |ω| > πL
K .

UkV

6`QK UkV- Bi +�M #2 b22M i?�i b2iiBM; δ = 1- vB2H/b � ~�i
bT2+i`mK- r?B+? +Q``2bTQM/b iQ i?2 +�b2 Q7 MQi ?�pBM;
�Mv MQBb2 b?�TBM;X h?Bb Bb mb27mH r?2M QTiBKBxBM; 7Q` �
bBM;H2 /2b+`BTiBQMX PM i?2 Qi?2` ?�M/- BM+`2�bBM; δ > 1
rBHH BM+`2�b2 i?2 Qmi@Q7@#�M/ MQBb2 #mi /2+`2�b2 i?2 BM@
#�M/ MQBb2X h?mb- r?2M δ Bb BM+`2�b2/- i?2 /BbiQ`iBQM /m2
iQ `2+2BpBM; �HH K /2b+`BTiBQMb Bb `2/m+2/ bBM+2 QMHv i?2
MQBb2 BM i?2 BM@#�M/ bT2+i`mK rBHH ?�p2 �M BKT�+i QM i?2
/BbiQ`iBQMX A7 H2bb i?�M K /2b+`BTiBQMb �`2 `2+2Bp2/- i?2
MQBb2 BM i?2 Qmi@Q7@#�M/ bT2+i`mK rBHH �z2+i i?2 /BbiQ`iBQM
�M/ i?2 /BbiQ`iBQM Bb i?2`27Q`2 BM+`2�b2/X

.X LQM@mMB7Q`K /QrMb�KTHBM; Q7 � MQBbv bB;M�H
Ai Bb r2HH FMQrM i?�i B7 i?2 bB;M�H Bb mM/2` i?2 BM~m2M+2

Q7 �//BiBp2 MQBb2- i?2M mMB7Q`K b�KTHBM; Bb ;2M2`�HHv
bmT2`BQ` iQ MQM@mMB7Q`K b�KTHBM; (jR)X JQ`2Qp2`- B7 MQM@
mMB7Q`K b�KTHBM; Bb mb2/- i?2 `2+QMbi`m+iBQM [m�HBiv
+QmH/ /2T2M/ mTQM i?2 b�KTHBM; T�ii2`MX hQ BHHmbi`�i2
i?Bb- H2i mb +QMbB/2` � r?Bi2 :�mbbB�M bB;M�H X rBi?
� b�KTHBM; 7`2[m2M+v Q7 πsX A7 r2 mTb�KTH2 X #v �
7�+iQ` Q7 L = 5 i?2 `2bmHiBM; bB;M�H Y ?�b � b�KTHBM;
7`2[m2M+v Q7 πL = Lπs #mi ?�b QMHv bmTTQ`i QM i?2
7`2[m2M+v BMi2`p�H [− 1

2πs,
1
2πs]X A7 r2 /QrMb�KTH2 Y #v

i?2 7`�+iBQM�H `�i2 Q7 5
2 - Bi Bb TQbbB#H2 iQ +QKTH2i2Hv

`2+Qp2` X 7`QK i?2 /QrMb�KTH2/ Y X �bbmK2 MQr i?�i Y
#2+QK2b MQBbv- 2X;X- /m2 iQ [m�MiBx�iBQM �M/ MQBb2 b?�TBM;X

> _1SG�*1 h>Aa GAL1 qAh> uPl_ S�S1_ A.1LhA6A*�hAPL LlJ"1_ < 8

hQ 2Hm+B/�i2 i?2 MQBbv bBim�iBQM- r2 +QMbi`m+i irQ MQBbv
bB;M�Hb- Y1 = Y + N1 �M/ Y2 = Y + N2- 2�+? ?�pBM; �
b�KTHBM; 7`2[m2M+v Q7 πLX h?2 MQBb2 N1- +QMbBbib Q7 r?Bi2
:�mbbB�M MQBb2- r?B+? ?�b #22M }Hi2`2/ #v i?2 }`bi@Q`/2`
6A_ ?B;?@T�bb }Hi2` C1(z) ;Bp2M #v,

c1 = [1,−0.6200]. UjV

h?2 MQBb2 N2- Bb r?Bi2 :�mbb�M MQBb2 }Hi2`2/ #v i?2 Ryth
Q`/2` 6A_ ?B;?@T�bb }Hi2` c2(z) ;Bp2M #v,k

c2 = [1.0000,−0.4685,−0.2586,−0.0735, 0.0520, U9V
0.1040, 0.0909, 0.0385,−0.0200,−0.0557,−0.0526].

h?2 MQBb2 bB;M�Hb �`2 MQ`K�HBx2/ iQ mMBi p�`B�M+2- �M/ i?2B`
TQr2` bT2+i`� 7Q` TQbBiBp2 7`2[m2M+B2b �`2 b?QrM BM 6B;X 9X
Ai K�v #2 MQiB+2/ i?�i #Qi? MQBb2 bB;M�Hb ?�p2 KQbi Q7
i?2B` 2M2`;v �i i?2 ?B;?2` 7`2[m2M+B2b- �M/ i?�i i?2 Qmi@Q7@
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Optimal decoder for non-stationary signals

• From an MMSE point of view, a two-stage approach is optimal:
• First phase-shift each received description to achieve coherence with source
• Average phase-shifted descriptions to obtain final estimate of source

[Machiach, Østergaard, Zamir, ITW 2013]

• Optimality was established for L=K but not for L<K or L>K

• We propose a heuristic decoding rule as a two-stage approach:
• First replace lost decriptions by the ”nearest” received description
• Lowpass filter and downsample by L to source sampling frequency



”MMSE” decoder versus Heuristic decoder - MSE
• Source is 10 sec. of Celine Dion music, sampled at 48 kHz

• Framesize is 120 samples, corresponding to 2.5 ms delay

• We upsample by L=2 and downsample by K=5 (descriptions)
• The ratio ƛ of the in-band and out-ot-band spectra of the shaped noise is varied, which control the 

side versus central distortion ratio.
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Figure 2: Central (left) and side (right) MSE distortion as a function of λ using two different
techniques for central reconstruction. Here K = 5, L = 2, and the frame size is 120 samples.

block of samples. We let the order of the filter for the linear predictive coder be 10.
Moreover, we reuse the same linear predictor in all K descriptions. This provides a
slight robustness towards packet losses, since descriptions can better share each oth-
ers predictor coefficients and residuals in case of missing descriptions. The predictor
coefficients are converted to line spectral frequency (LSF) coefficients [29] and uni-
formly scalar quantized [30, 31]. The 10 dimensional LSF vector is then split-vector
entropy coded in sub-blocks of dimension 3,3, and 4, samples. Each packet include
the entire quantized LSF vector. The resulting bitrate is 24.65 bits per LSF vector on
average. Each residual coefficient vector is of dimension LB/K. The gain factor of
each residual vector is encoded separately in the log-domain using approximately 4.84
bits per packet per description. The normalized residual coefficients in each descrip-
tion are scalar quantized and scalar entropy coded using a static Huffman entropy
coder, which is trained on music files that are not in the test set.

We compare the performance of the proposed coder to that of the Opus codec. To
achieve robustness towards packet losses for the Opus codec, we duplicate (repeat)
packets and make sure that the total bitrate is at 300 kbps. Specifically, we encode
using the Opus coder at a bitrate of 150 kbps and a packet loss probability of p2, in
order to simulate the situation of duplicating the packet on a communication channel
having i.i.d. packet losses and a packet loss probability of p. Similarly, we encode
with Opus at bitrates of 100 kbps for simulating a communication scenario where we
transmit each packet three times and use a packet loss probability of p3. The total
bitrate is therefore 300 kbps, and each 2.5 ms frame of either 150 or 100 kbps, is
transmitted two or three times, respectively. We refer to these cases as Opus K = 2
and Opus K = 3. Since the Opus codec require packet loss probabilities in the unit
of integer percentages (from 0, . . . , 100), we have set the packet loss probability to
zero for the case where round(100pK) = 0. For example, 0.153 · 100 = 0.3375, which
means that performance results for Opus K = 3 and for p ≤ 0.15, are obtained
without packet losses and are simply the PEAQ ODQ scores obtained using 100 kbps
and a frame size of 2.5 ms. The mean PEAQ ODG scores are reported in Fig. 3
(right) as a function of packet loss probabilities.



”MMSE” vs Heuristic decoder: Objective Difference Grade (ODG)
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Figure 3: Mean ODG scores as a function of λ (left) and packet-loss probabilities (right).

Conclusions and future work

A flexible robust audio coder is proposed, where the coding rate, latency, number
of descriptions, and side-to-central distortion ratio can be arbitrarily chosen. The
proposed coder can be classified as a symmetric multiple-description coder, where
the operational description rates are nearly the same for all descriptions and the
operational distortions are also nearly the same for all descriptions. For the case of
low delay and when packets can be lost, it was demonstrated that a simple coding
architecture based on linear prediction, fractional sampling, and closed-loop scalar
quantization performs as well as perceptually optimized audio coders such as Opus
combined with repetition coding.
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Due to source aliasing in individual descriptions, the 
”MMSE” decoder does not necessarily guarantee a smooth
transitions between blocks and it will course a low pass
filtering of the signal. 

(note that it is not the true MMSE decoder)
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Figure 10 Illustration of the boundary effects due to the decoder
switching.

a naive approach is simply to replace the lost packet by
zeros. However, since this effectively means that only a
single packet is used, the central reconstruction suffers
from a decrease in energy as can be seen in Figure 10 (the
dash-dotted line).
An obvious solution is to scale the received Odd packet

by two and thereby counteract the loss of energy. Unfortu-
nately, while less severe, an audible notch around sample
152 is still present in the reconstructed signal (illustrated
by the dashed line in Figure 10), see also Figure 11. To
solve the issue, we let the even packet be equal to the
odd packet, which yields a smooth boundary transition
(illustrated by the black line in Figure 10). In this case,
the even LPC filter states are updated with sample values
closer to the desired. Interestingly, while the latter method
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Figure 11 Same setup as in Figure 10 but here zoomed-in on
small interval.

(packet copying) yields more visually and acoustically
pleasing boundary transitions, the former method (zero-
ing even packet and scaling odd packet) actually results in
a smaller overall MSE, i.e., -38.8 versus -38.3 dB, respec-
tively, for the case of 1% packet losses. In the example
described above, we used LPC filter orders of 5, predic-
tion block sizes of 512 samples, a resampling filter order
of 200, noise-shaping filters of order 10, λ = 1/100,
and " = 1/100.

3.4.3 State 13
In this state, all buffers are zero, which corresponds to the
initial state of the system. The decoder is then operated as
in state 1.

3.4.4 States 14 and 15
As was the case for state 13, all buffers are also zero here.
If the current state is 14 (15), the decoder is then in the
next state operated as in state 2 (3).

3.4.5 States 4, 8, 12, and 16
In these states, no packets are received by the decoder. We
then simply replace both packets by zeros and update the
states of the LPC filters and low-pass filter accordingly.

4 Simulation study
In this section, we provide simulation studies of the pro-
posed coder. We simulate an environment with packet
losses of 0.1%, 1%, and 10%. We restrict the quantization
step sizes to " ∈ {0.01, 0.05}, the block size upon which
the predictor is used to {64, 128, 256, 512, 1024, 2048}, and
the LPC filter order to plpc ∈ {5, 10}. Finally, in all sim-
ulations, the low-pass filters used for resampling are of
order 200, the noise-shaping filter is of order 10, and the
noise-shaping ratio λ = 0.01.

4.1 Study 1
In this study, we quantize the residual but we do not
quantize the predictor (LPC) coefficients. The test data
consists of five audio segments containing rock, jazz, pop,
speech, and harpsichord music, respectively. Each seg-
ment is sampled at 48 kHz and with a duration of 10 s.

Table 4 Relationship between the ITU-R 5-grade scale and
ODG [30]

Impairment ITU-R 5-grade scale ODG

Imperceptible 5.0 0.0

Perceptible but not annoying 4.0 -1.0

Slightly annoying 3.0 -2.0

Annoying 2.0 -3.0

Very annoying 1.0 -4.0
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Simulation study: 300 kbps, 2.5 ms delay, i.i.d. packet losses.
Music files: 10 excerpts each of 20 sec. duration
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Figure 3: Mean ODG scores as a function of λ (left) and packet-loss probabilities (right).

Conclusions and future work

A flexible robust audio coder is proposed, where the coding rate, latency, number
of descriptions, and side-to-central distortion ratio can be arbitrarily chosen. The
proposed coder can be classified as a symmetric multiple-description coder, where
the operational description rates are nearly the same for all descriptions and the
operational distortions are also nearly the same for all descriptions. For the case of
low delay and when packets can be lost, it was demonstrated that a simple coding
architecture based on linear prediction, fractional sampling, and closed-loop scalar
quantization performs as well as perceptually optimized audio coders such as Opus
combined with repetition coding.
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DSQ coder
• Oversample with L=2 and make K=2 or K=3 

descriptions
• Total coding sumrate is 300 kbps
• Total delay is 120 samples (2.5 ms at 48 kHz)
• 10 dim. LSF vectors: 10 kbps per packet.
• Gain factors: 2 kbps per packet.

Opus coder
• Framesize set to 2.5 ms.
• Encoding at 100 and 150 kbps
• Repeating packets K=3 or K=2 times
• Total sumrate is 300 kbps.
• The effective packet loss rate is p^K
• Note that: round(100*0.15^3) = 0.
• Opus demo implementation with: ”-loss”



Conclusions and discussion

• A flexible multiple-description low-delay audio coder is proposed
• Coding rate, latency, number of descriptions, and side-to-central distortion ratio can be

arbitrarily chosen.
• The coder consists only of simple signal processing blocks

• Fractional sampling, linear prediction, scalar quantization, and noise-shaping.
• The main application envisioned is very low delay high-quality interactive audio

• At 2.5 ms delay, the performance was better than perceptually optimized coders such as Opus 
(followed by repetition coding)

• Open source Matlab code is available, see paper for details.


