Compact Polyominoes

Shahin Kamali (University of Manitoba)
March 2021

Compact Polyominoes
2 - 1/13

Polyominoes

edge-by-edge (each cell has up to four neighbors).

o A polyomino is connected by definition (one can visit all cells
moving along connected cells).
o There can be holes inside a polyomino.

Compact Polyominoes

2/13

Polyominoes

edge-by-edge (each cell has up to four neighbors).
o A polyomino is connected by definition (one can visit all cells
moving along connected cells).
o There can be holes inside a polyomino.

o Motivation: algorithms for polyominoes are introduced in geometric
folding and graphics (e.g.,
[Aichholzer et al., 2021, Biedl et al., 2012]); but how should they be
stored?

Compact Polyominoes
2/13

Storing Polyominoes

navigation and visibility queries for any cell in P in constant time.

Compact Polyominoes

Storing Polyominoes

navigation and visibility queries for any cell in P in constant time.

o Navigation queries:

o Neighborhood: given a cell ¢ € P, report neighbors of ¢ on its
left/right/top/bottom (if they exist).

o Degree: given a cell c € P, report the number of neighbors of c.

o Adjacency: given two cells ¢i, ¢; € p, indicate whether they are
neighbors or not.

Compact Polyominoes

3/13

Storing Polyominoes

column of the underlying grid and the straight line segment between
them is fully inside the polyomino (e.g., a, ¢ are visible but c, e are
not).
o Visibility queries:
o Listing queries: given a cell ¢ € P and a distance d, report all cells
visible to ¢ at distance d of c.
o Examining queries: given two cells c1, &2 € p, indicate whether they
are visible or not.

a |x |w b
Yy |z |d
¢ |

Compact Polyominoes

4/13

Contribution

Theorem

For a polyomino P of size n, an oracle is constructed that takes
3n + o(n) bits and answers all visibility/navigation queries in

o(1).

o At least 2.00091n — o(n) bits [Barequet et al., 2016] (likely
2.022n — o(n) bits [Jensen and Guttmann, 2000]) are required to
distinguish polyominoes, confirming that our oracle is compact.

Compact Polyominoes

5/13

¢ Initial Attempt (BST-tree)

o Each cell in P is mapped to a node in T.
o Each non-root node gets a label from

{Left(L), Right(R), Bottom(B), Top(T)}

that indicates its position relative to its parent.

10 8 4

®
12 (15 |13 |11 |14 7 e 9
9

Compact Polyominoes
6 /13

4 Initial Attempt (BST-tree) [cntd.]

find the position of each cell in the underlying grid in O(1).
Proposition

It is possible to store a polyomino of size n in 4n+ o(n) bits, and
indicate if any pair of cells are adjacent and/or visible in O(1).

0 0 15
2136 27 s
7 |4 5 - o —~

10 3
12 15[13 11 |14 “(r) 8 T)°
16 0(p) dl(p
B LR
R R

Initial Attempt (BST-tree) [cntd.]

neighbors/visible cells of a given vertex.

o E.g., it is not clear how ¢ should be located when reporting
neighbors of a.

Compact Polyominoes

8/13

Compact Oracle for Polyominoes

o Nodes at each level of the tree correspond to one row of the
polyomino in the underlying grid.
o The parent of cell ¢ is the rightmost cell at previous level that
appears on the same column or on the left of c.
o Add a column of dummy cells on the left to ensure such a parent
exists.

root

qH T

S —— -]
3 1
1
10 Sl B I

Compact Polyominoes

9/13

Compact Oracle for Polyominoes [cntd.]

o For each cell ¢, store one bit that indicates whether c is adjacent to
its sibling on its left in T*.

o E.g., the bits of L starting at cell a and ending at cell p (in the
level-order traversal) are “110011110001110".

root

0]
1___
3 \h\:\ﬁ I

10 S | I

16

21

25 “L\bL?E

32| ol dle 1| lo ok

381 ol [¢]o[s!1|kh %'7
1] n |

Compact Oracle for Polyominoes [cntd.]

o Store the covering tree T* using a recent succinct oracle
of [He et al., 2020] that enables a mapping between the pre-order
and level-order traversal for ordinal trees.

o Store the left bitstreing L using a common rank/select data
structure for bitstrings (e.g., the structure of [Barbay et al., 2010]).

Compact Polyominoes

11 /13

Compact Oracle for Polyominoes [cntd.]

o Store the covering tree T* using a recent succinct oracle
of [He et al., 2020] that enables a mapping between the pre-order
and level-order traversal for ordinal trees.

o Store the left bitstreing L using a common rank/select data
structure for bitstrings (e.g., the structure of [Barbay et al., 2010]).

o Storing T* takes 2n + o(n) and storing L takes n+ o(n); in total,
we use 3n + o(n) bits.

Compact Polyominoes

11 /13

Answering queries

o Given any cell ¢, we can find its levels in T* and its level-order
index in T* in O(1).
o Two cells at the same level are:

o adjacent iff they appear consequently in the level-order traversal,
and the bit stored for the second one in L is 1.
o visible iff the substring of L between them is formed by all 1's.

o Two cells at different levels are:

o adjacent iff one is the leftmost child of the other.
o visible iff one is the leftmost descendant of the other among cells of
the same level.

o All queries can be answered in O(1) given the support provided by
the data structures used for storing T* and L.

Compact Polyominoes

12 /13

/"

Summary

o Here is the summary of the results:

Theorem

For a polyomino P of size n, an oracle is constructed that takes
3n+ o(n) bits and answers the following queries in O(1).

- Given a cell c € P, report the vertices that are visible to ¢ and
located at distance d > 1 of ¢ on its left/right/top/bottom.

- Given two cells c1, c; € P, indicate whether ¢, and ¢, are visible.

Compact Polyominoes

13 /13

Demaine, M. L.; Fekete, S. P.;
Kleist, L.; Kostltsyna, l.; Loffler,
M.; Masarova Z.; Mundilova, K.;
and Schmidt, C. (2021)
"Folding polyominoes with holes into a cube”.
Comput. Geom., 93, pp. 101700

Barbay, J.; Gagie, T.; Navarro,
G.; and Nekrich, Y. (2010).

" Alphabet Partitioning for Compressed
Rank/Select and Applications”.

pages 315-326

Barequet, G.; Rote, G.; and
Shalah, M. (2016).

"X > 4: an improved lower bound on the
growth constant of polyominoes”.
Commun. ACM, 59(7), pp. 88-95

Biedl, T. C.; Irfan, M. T.; Iwerks.
J.; u)n, J.; ‘and Mitchell, 'J.S.

(2012

Geary, R. F.; Raman, R.; and
Raman, V. (2006).

"Succinct ordinal trees with level-ancestor
queries” .

ACM Trans. Algorithms, 2(4), pp. 510-534

He, M.; Munro, J. I.; Nekrich, Y.;
Wiid, S.; and Wu, K. (2020).

" Distance Oracles for Interval Graphs via

Breadth-First Rank/Select in Succinct Trees”.

In proc. 31st International Symposium on
Algorithms and Computation (ISAAC), page
to appear
Jensen, I. and Guttmann, A. J.
(2000

" “Statistics of lattice animals (polyominoes)
and polygons”"”

J. Phys. A: Math. Gen., 33, pp. 257-263.

Compact Polyominoes

13 /13

	References

