
Compact Polyominoes

Shahin Kamali (University of Manitoba)

March 2021

1 / 13
Compact Polyominoes

N



Polyominoes

A polyomino is the union of a set of unit cells that are adjacent
edge-by-edge (each cell has up to four neighbors).

A polyomino is connected by definition (one can visit all cells
moving along connected cells).
There can be holes inside a polyomino.

Motivation: algorithms for polyominoes are introduced in geometric
folding and graphics (e.g.,
[Aichholzer et al., 2021, Biedl et al., 2012]); but how should they be
stored?
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Storing Polyominoes

Goal: store a given polyomino P with n cells compactly and answer
navigation and visibility queries for any cell in P in constant time.

Navigation queries:

Neighborhood: given a cell c ∈ P, report neighbors of c on its
left/right/top/bottom (if they exist).
Degree: given a cell c ∈ P, report the number of neighbors of c.
Adjacency: given two cells c1, c2 ∈ p, indicate whether they are
neighbors or not.
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Storing Polyominoes

Two cells c1 and c2 are visible iff they appear on the same cell or
column of the underlying grid and the straight line segment between
them is fully inside the polyomino (e.g., a, c are visible but c , e are
not).

Visibility queries:

Listing queries: given a cell c ∈ P and a distance d , report all cells
visible to c at distance d of c.
Examining queries: given two cells c1, c2 ∈ p, indicate whether they
are visible or not.
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Contribution

Theorem

For a polyomino P of size n, an oracle is constructed that takes
3n + o(n) bits and answers all visibility/navigation queries in
O(1).

At least 2.00091n − o(n) bits [Barequet et al., 2016] (likely
2.022n − o(n) bits [Jensen and Guttmann, 2000]) are required to
distinguish polyominoes, confirming that our oracle is compact.
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Initial Attempt (BST-tree)

Store the input polyomino P using a labeled Breadth First Tree T .

Each cell in P is mapped to a node in T .
Each non-root node gets a label from

{Left(L),Right(R),Bottom(B),Top(T )}

that indicates its position relative to its parent.
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Initial Attempt (BST-tree) [cntd.]

Using a data structure of [Geary et al., 2006] to store T , one can
find the position of each cell in the underlying grid in O(1).

Proposition

It is possible to store a polyomino of size n in 4n+o(n) bits, and
indicate if any pair of cells are adjacent and/or visible in O(1).
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Initial Attempt (BST-tree) [cntd.]

Unfortunately, using a BST approach, it is not possible to report
neighbors/visible cells of a given vertex.

E.g., it is not clear how c should be located when reporting
neighbors of a.
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Compact Oracle for Polyominoes

Covering Tree T ∗:

Nodes at each level of the tree correspond to one row of the
polyomino in the underlying grid.
The parent of cell c is the rightmost cell at previous level that
appears on the same column or on the left of c.

Add a column of dummy cells on the left to ensure such a parent
exists.
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Compact Oracle for Polyominoes [cntd.]

Left bitstring L:

For each cell c, store one bit that indicates whether c is adjacent to
its sibling on its left in T ∗.
E.g., the bits of L starting at cell a and ending at cell p (in the
level-order traversal) are “110011110001110”.
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Compact Oracle for Polyominoes [cntd.]

Store the covering tree T ∗ using a recent succinct oracle
of [He et al., 2020] that enables a mapping between the pre-order
and level-order traversal for ordinal trees.

Store the left bitstreing L using a common rank/select data
structure for bitstrings (e.g., the structure of [Barbay et al., 2010]).

Storing T ∗ takes 2n + o(n) and storing L takes n + o(n); in total,
we use 3n + o(n) bits.
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Answering queries

Given any cell c , we can find its levels in T ∗ and its level-order
index in T ∗ in O(1).

Two cells at the same level are:

adjacent iff they appear consequently in the level-order traversal,
and the bit stored for the second one in L is 1.
visible iff the substring of L between them is formed by all 1’s.

Two cells at different levels are:

adjacent iff one is the leftmost child of the other.
visible iff one is the leftmost descendant of the other among cells of
the same level.

All queries can be answered in O(1) given the support provided by
the data structures used for storing T ∗ and L.
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Summary

Here is the summary of the results:

Theorem

For a polyomino P of size n, an oracle is constructed that takes
3n + o(n) bits and answers the following queries in O(1).

- Given a cell c ∈ P, report the vertices that are visible to c and
located at distance d ≥ 1 of c on its left/right/top/bottom.

- Given two cells c1, c2 ∈ P, indicate whether c1 and c2 are visible.

13 / 13
Compact Polyominoes

N



References

References

Aichholzer, O.; Akitaya, H. A.;
Cheung, K. C.; Demaine, E. D.;
Demaine, M. L.; Fekete, S. P.;
Kleist, L.; Kostitsyna, I.; Löffler,
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