Efficient algorithms for decode efficient prefix codes

Shashwat Banchhor, Rishikesh R. Gajjala Yogish Sabharwal, Sandeep Sen

Why are decode efficient prefix codes important?

- Data compression techniques focus on achieving maximum compression but there is an inherent cost to encode and decode(decompress).
- Encoding is done once but decoding is done multiple times.
- The cost to decode can be very high for certain real time applications.
 - Eg: Inference from deep learning models
- This can reduced by using fast memories but proper consideration of this hasn't been done.

Memory model - Blocking Scheme

A blocking scheme of m block levels is a sequence of m block parameters < $(w_1,q_1),(w_2,q_2), ...,(w_m,q_m)$ > wherein w_i represents the number of bits required to access the block and q_i represents the access cost of the block.

a) Prefix Tree stored in *BS* b)

b) BS : <(2,1), (3,20)>

Blocking Scheme viewed as Cost function(cst)

• Given BS: For any character c_i at depth I_i in the tree stored in the BS, the access cost of c_i is **cst(I_i)**

Problem Definition

Given input parameter *L*, alphabet *C* with **n characters** (s.t. any character c_i has frequency f_i) and a non-decreasing **cost function** *cst s.t.* the cost to access a character at depth I_i is *cst*(I_i). Find depth $I_1, I_2, ..., I_{n-1}, I_n$ corresponding to each character:

$$\begin{aligned} \mathbf{Minimize} \sum_{i=1}^{n} cst(l_i) \cdot f_i \\ \mathbf{s.t.} \sum_{i=1}^{n} l_i \cdot f_i &\leq L \\ \mathbf{and} \ \sum_{i=1}^{n} 2^{-l_i} &\leq 1 \end{aligned}$$

(Decode Time)

(Codelength Constraint)

(Kraft's Inequality - ensures valid prefix tree)

We call this the DOPT(L) problem (Decode Optimum).

Our Contribution

• A dynamic program to solve DOPT(L) problem in $O(n^3.L)$ time.

An approximation algorithm to find a prefix tree having code length at most (1+ε).L and decode time at most the decode time of the optimum solution of DOPT(L) in O(n⁴/ε) time.