
Efficient algorithms for decode
efficient prefix codes

Shashwat Banchhor, Rishikesh R. Gajjala
Yogish Sabharwal, Sandeep Sen

Why are decode efficient prefix codes important?

● Data compression techniques focus on achieving maximum compression but there is an
inherent cost to encode and decode(decompress).

● Encoding is done once but decoding is done multiple times.

● The cost to decode can be very high for certain real time applications.
○ Eg: Inference from deep learning models

● This can reduced by using fast memories but proper consideration of this hasn’t been done.

Memory model - Blocking Scheme
A blocking scheme of m block levels is a sequence of m block parameters < (w1,q1),(w2,q2), .. ,(wm,qm) >
wherein wi represents the number of bits required to access the block and qi represents the access cost of
the block.

a) Prefix Tree stored in BS b) b) BS : <(2,1), (3,20)>

Blocking Scheme viewed as Cost function(cst)
● Given BS: For any character ci at depth li in the tree stored in the BS, the access cost of ci is cst(li)

Decode Time: Code Length:

Problem Definition

Given input parameter L, alphabet C with n characters (s.t. any character ci has
frequency fi) and a non-decreasing cost function cst s.t. the cost to access a
character at depth li is cst(li). Find depth l1,l2,..., ln-1,ln corresponding to each character:

We call this the DOPT(L) problem (Decode Optimum).

(Codelength Constraint)

(Decode Time)

(Kraft’s Inequality - ensures valid prefix tree)

Our Contribution

● A dynamic program to solve DOPT(L) problem in O(n3.L) time.

● An approximation algorithm to find a prefix tree having code length at most
(1+ϵ).L and decode time at most the decode time of the optimum solution of
DOPT(L) in O(n4/ϵ) time.

