

Flow-grounded Dynamic Texture Synthesis for Video Compression

Suhong Wang, Xinfeng Zhang, Shanshe Wang, Siwei Ma and Wen Gao

Institute of Digital Media, Peking University

Background

- Video contents can be classified into three categories:
 - Static contents (e.g. walls, fabric, surface of stones)
 - Activities (e.g. translation motion, rotation and scaling)
 - **Dynamic textures** (e.g. water surfaces, smoke, fire, clouds)
- What are dynamic textures (DT) ?
 - Time-varying motion patterns which exhibit certain temporal stationarity.
 - Usually existing non-linear motion.

- Block-based predictive coding scheme shows poor performance for DT contents.
 - Rapid change over time and randomness.
- ⇒ Cannot obtain prediction blocks with high similarity in pixel level from reference frames.

- **Block-based predictive coding scheme shows poor performance** for DT contents.
 - Prediction characteristics analysis:

Fig. 1 Comparisons of partition results.

- Small block partition tends to occur for DT contents.
- Residual of DT contents are much higher than other contents. ۲

(b) DT sequence

Fig. 2 Distribution of prediction error value of two sequences.

A more effective compression scheme should be investigated.

Method: Overview

- An analysis-synthesis video compression scheme is proposed based on temporal characteristics of DT.
 - DT motion is first analyzed to generate flowlines and measure the period value of a given DT sequence.
 - After encoding key frames, flow-grounded DT synthesis is performed to replace traditional coding process of the un-coded frames.

• Particle movement for DT synthesis

- Textons in a DT sequence are denoted as a set of particles.
- The synthesis procedure can be implemented by sequentially moving the particles along the flowlines over time at period N.

Fig. 4 DT synthesis process.

- Flowline generation
 - For a spatial point x, the differential equation is defined as follows:

$$\frac{dx}{dt} = v(x)$$

- With s_0 represents the starting point and u refers to the integration variable. The position at time t is given by:

$$s(t) = s_0 + \int_{0 \le u \le t} v(s(u)) du$$
, $s_{i+1} = s_i + v(s_i) \cdot d_t$

(a) Optical flow fields(b) Generated flowlinesFig. 5 An example of flowline generation process.

• Periodicity measurement

- Calculate the motion feature A_n of each frame by wavelet transform.
- Applying SVD to detect periodicity of the motion signal.

$$A_{n} = USV^{T}, S = diag(s_{1}, s_{2}, \cdots, s_{r}; 0)$$

- $s_1 \gg s_2$ indicates a nearly periodic component of the length *n*.
- To find the most appropriate period value:

$$N = argmax_{n} \left(\frac{1}{W} \sum_{i=1}^{W} 1 - \frac{s_{2}(n, i)}{s_{1}(n, i)}\right)$$

- Integration into a VTM-10.0
 - Number of key frames is set according to the analyzed period *N*.

 $N_{final} = k \cdot GOPsize, k = \lfloor N/GOPsize \rfloor$

 $N_{key} = 2 \times (N_{final} - 1)$

Flowline distribution needs to be sent to decoder side. Run length coding is extended in this work to encode the map.

Fig. 7 Map coding for flowlines.

Experiments (1/2)

• Bitrate Savings

 $- \Delta Rate = (R - R_p)/R \times 100\%$

Resolution	Sequence	Database	Period	Bitrate Saving(%)	
				RA	LDB
1024×1024	Fountains	SJTU 4K	16	67.85	51.99
	SmokeClear	BVI textures	32	33.82	22.53
512×512	CampfireParty	SJTU 4K	16	52.61	56.84
	CamlingWater	BVI textures	32	42.01	45.06
$256{ imes}256$	WaterFall	HomTex	16	18.96	21.79
	ReflectionWater		16	57.38	63.92
	GreenWater		16	86.62	87.57
	BoilingWater		32	16.87	18.70
Average				47.02	46.05
Encoding Time(%)				37.31	31.14

Experiments (2/2)

• Subjective evaluation

- A resulting MOS value of 2.5 indicates that anchor and proposed method were rated to have the same visual quality.
- These DT contents which are difficult to encode can use synthesized results with comparable visual quality.

