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Introduction

Algorithms in High Performance Computing (HPC) commonly
work with large multi-dimensional grids of floating point data.
Some important algorithms are limited by network bandwidth.

- Distributed Matrix Transpose

- Cooley-Tukey Fast Fourier Transform
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Data compression can transparently increase effective bandwidth.

- Must be lossless in the general case

- Saturating the interconnect requires high throughput
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Specialized Floating-Point Compressors

General-purpose byte-oriented compressors are not a good fit for floating-point data.

- Grid data is often smooth, but values are still individually unique
- Effective decorrelation requires interpretation of the floating-point representation

- Most well known compressors have asymmetric performance

Typical building blocks of existing specialized compressors are:

1. Prediction of each floating point value, local or global
2. A difference operator yielding a residual from the prediction

3. An encoding scheme favoring small residuals.

Existing specialized algorithms [6][3][1][2] are either trading throughput for higher
compression ratios or are not optimized for modern hardware.
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ndzip is a novel, lossless block compression scheme for multi-dimensional grids of
univariate floating-point data.

Its design enables efficient, highly parallel implementation on modern hardware through

- Locality: values are decorrelated only from direct neighbors
- Parallelism: coarse-grained between blocks, fine-grained within compression stages

- Dimensionality-awareness: grid size is an input for multidimensional decorrelation

We present the ndzip algorithm and an implementation on x86_64 hardware using the
AVX2 vector extension.
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ndzip Compression Pipeline

ndzip subdivides the grid into fixed-size blocks, which are compressed independently.
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Decompression simply reverses each compression step; ndzip is symmetric.
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The Lorenzo Predictor [4]

Predict values from all known neighbors in a length-2 hypercube:
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New: Integer Lorenzo Transform

Calculating the prediction residuals directly without an intermediate step yields a
separable transform in the multi-dimensional case.
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Vectorized Integer Lorenzo Transform

The Integer Lorenzo Transform is separable: An n-dimensional transform is equivalent to
performing a one-dimensional transform along each of the n dimensions.
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Residual Value Encoding

Small integer residuals have many redundant sign bits, which can be encoded efficiently
using the vertical bit-packing scheme introduced in [7].

1. Turn redundant bits into zero-bits with a sign-magnitude representation

2. For each 32- (64-) word block, transpose the 32 x 32 (64 x 64) bit matrix

3. Eliminate zero-rows and prepend a header bitmap encoding the omitted rows

wordo [0 1011'T [00110010]

word1 | 0 0000 17000111 1] Head
word2 |1 0111 00110010/ Bito
Word3 |1 0000| _ __|10001000]| Bits
Word4 | 0 17100| ~ |170001000| ° |00101001 3it 5
words |0 000 1 00101001 170100010]| Bité
Word6 | 1 0010 170100010 170100100 Bit7
word7 |0 0100 170100100
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Vectorized Residual Value Encoding

Vertical bit packing is complex to implement efficiently, but operates at a 32-bit
granularity and requires little branching in the compaction step.

Naive implementation: 32 x 32 nested loop with one shift+and+or per bit

Complexity, autovectorized: 772 (5398) instructions for single (double) precision.

Manually vectorized two-stage implementation:

1. Transpose equivalent 32 x 4 byte matrix with permute+unpack vector operations
= results in a 4 x 32 matrix, where each element is an 8-bit column vector

2. For each output row, extract 32 bits in parallel using one shift+vpmovmskb
(move byte mask) operation each

Complexity: 124 (625) instructions for single (double) precision.
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Thread Parallelism Between Blocks

Compression requires synchronization to determine output positions
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Decompression can use simple work-sharing with meta-information from the compressor
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dataset single double extent
msg_sppm v v 34,874,483
msg_sweep3d v v 15,716,403
snd_thunder v 7,898,672
ts_gas v 4,208,261
ts_wesad v 4,588,553
hdr_night v 8,192 x 16,384
hdr_palermo v 10,268 x 20,536
hubble v 6,036 x 6,014
rsim v Vv 2,048 x 11,509
spitzer_fls_irac v 6,456 x 6,389
spitzer_fls_vla v 8,192 x 8,192
spitzer_frontier 3,874 x 2,694

dataset single double extent
asteroid v 500 x 500 x 500
astro_mhd v 128 x 512 x 1024
astro_mhd v 130 x 514 x 1026
astro_pt v 512 x 256 x 640
flow v 16 x 7,680 x 1,0240
hurricane v 100 x 500 x 500
magrecon v 512 x 512 x 512
miranda v 1,024 x 1,024 x 1,024
redsea v v 50 x 500 x 500
sma_disk v 301 x 369 x 369
turbulence v 256 x 256 x 256
wave v v 512 x 512 x 512

Hardware: AMD Ryzen 9 3900X (12 cores, 24 threads), 64 GB DDR4-3200 RAM
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Test Setup

Test Data from various scientific domains [5]:
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Approximation Quality of the Integer Lorenzo Transform

Integer approximation slightly Recall
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Compressor Efficie

ndzip is 6x faster than the second-fastest specialized, parallel compressor pFPC

compression

decompression

arithmetic mean uncompressed throughput [MB/s]
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Parallel Scaling

ndzip profits significantly from many-
threaded execution. Decompression,
which requires no synchronization, is the

most threading-friendly.
4 B
Reference: The throughput of optimized 3 single compression

—+— single decompression
2 —+— double compression
—+— double decompression

memory-to-memory copy is 16.3 GB/s on
this system, as reported by the STREAM
benchmark. i > 3 4 6 "1'0 20

number of threads

uncompressed throughput [GB/s]
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Conclusion & Future Directions

ndzip is a novel, lossless block compression schemes for floating-point data.
For the targeted hardware, we demonstrated an implementation that achieves throughput
unprecedented by existing specialized floating-point compressors. This is achieved with

- A design that exposes data locality and multiple levels of parallelism

- The novel, data-parallel Integer Lorenzo Transform for decorrelation

- A hardware-friendly residual coding scheme

Future Directions

We are currently working on a GPU implementation, which profits from the same design
decisions. Stay tuned!
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_ Celerity

High-level C++ for Accelerator Clusters

ndzip was developed as part of the Celerity project, a distributed-memory runtime for
accelerator clusters. Celerity automatically derives communication and execution
schedules for programs while providing an expressive C++ API to the user.
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Thttps://celerity.github.io
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Thank You!

ndzip is available at https://github.com/fknorr/ndzip.

If you have questions, feel free to contact me at fabianadps.uibk.ac.at.


https://github.com/fknorr/ndzip
mailto:fabian@dps.uibk.ac.at
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