
2021 Data Compression Conference

ndzip
A High-Throughput Parallel Lossless
Compressor for Scientific Data

Fabian Knorr, Peter Thoman and Thomas Fahringer

Distributed and Parallel Systems Group
University of Innsbruck, Austria



Introduction

Algorithms in High Performance Computing (HPC) commonly
work with large multi-dimensional grids of floating point data.
Some important algorithms are limited by network bandwidth.

• Distributed Matrix Transpose
• Cooley-Tukey Fast Fourier Transform
• …

Data compression can transparently increase effective bandwidth.

• Must be lossless in the general case
• Saturating the interconnect requires high throughput

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 1



Specialized Floating-Point Compressors

General-purpose byte-oriented compressors are not a good fit for floating-point data.

• Grid data is often smooth, but values are still individually unique
• Effective decorrelation requires interpretation of the floating-point representation
• Most well known compressors have asymmetric performance

Typical building blocks of existing specialized compressors are:

1. Prediction of each floating point value, local or global
2. A difference operator yielding a residual from the prediction
3. An encoding scheme favoring small residuals.

Existing specialized algorithms [6][3][1][2] are either trading throughput for higher
compression ratios or are not optimized for modern hardware.

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 2



ndzip Overview

ndzip is a novel, lossless block compression scheme for multi-dimensional grids of
univariate floating-point data.

Its design enables efficient, highly parallel implementation on modern hardware through

• Locality: values are decorrelated only from direct neighbors
• Parallelism: coarse-grained between blocks, fine-grained within compression stages
• Dimensionality-awareness: grid size is an input for multidimensional decorrelation

We present the ndzip algorithm and an implementation on x86_64 hardware using the
AVX2 vector extension.

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 3



ndzip Compression Pipeline

ndzip subdivides the grid into fixed-size blocks, which are compressed independently.

Block
Subdivision

Integer Lorenzo
Transform

n 
pa

ss
es

Si
gn

 B
it
 R

ot
at

io
n

T

Bit Matrix
Transposition

0 0 0 1 0 1
0 0 0 0 0 0
0 1 0 0 0 0
1 1 0 1 1 1
0 0 0 0 0 0
0 0 1 1 1 1

Zero-Word
Elimination

Zero-Position Bitmap

Non-Zero Words

Conca-
tenation

101101

000101
010000
110111
001111

0 0 0 0 1 1
0 1 0 1 0 0
0 0 0 1 0 0
1 1 0 1 1 1
001011

000101
101000

101111
010111

T
o 

Si
gn

-M
ag

ni
tu

de

0 0 0 1 0 0
0 0 1 1 0 0
0 0 0 0 0 1
1 0 0 1 0 1
0 0 0 1 0 1
1 0 0 1 0 1

Chunk
Subdivision

Decompression simply reverses each compression step; ndzip is symmetric.

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 4



The Lorenzo Predictor [4]

Predict values from all known neighbors in a length-2 hypercube:

1D

[
1 p1

]

p1 = 1

2D

[
1 2
3 p2

]

p2 = −1+ 2+ 3
= 4

3D

[
1 2
3 4

][
5 6
7 p3

]

p3 = 1− 2− 3+ 4
−5+ 6+ 7 = 8

negative coefficient
positive coefficient

prediction

Very effective [6], but
reconstruction during
decompression limits
parallelism.

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 5



New: Integer Lorenzo Transform

Calculating the prediction residuals directly without an intermediate step yields a
separable transform in the multi-dimensional case.

1D

[
1 1

]

[
1 0

]

2D

[
1 2
3 4

]

[
1 1
2 0

]

3D

[
1 2
3 4

][
5 6
7 8

]

[
1 2
3 4

][
5 6
7 0

]

negative coefficient
positive coefficient

true value

Since this transform is not
reversible in floating-point
arithmetic, it is approximated
in the integer domain.

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 6



Vectorized Integer Lorenzo Transform

The Integer Lorenzo Transform is separable: An n-dimensional transform is equivalent to
performing a one-dimensional transform along each of the n dimensions.

Forward Transform

The forward transform is fully parallel in each dimension. Each
vector instruction computes 8 single-precision or
4 double-precision deltas simultaneously.

difference

(n
pa
ss
es
)

Inverse Transform

The inverse transform has a dependence on the predecessor value
in each row. Separability exposes n− 1 dimensions of parallelism
in each step. The 1-dimensional case cannot be efficiently
parallelized on this hardware.

prefix sum

(n
pa
ss
es
)

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 7



Residual Value Encoding

Small integer residuals have many redundant sign bits, which can be encoded efficiently
using the vertical bit-packing scheme introduced in [7].

1. Turn redundant bits into zero-bits with a sign-magnitude representation
2. For each 32- (64-) word block, transpose the 32× 32 (64× 64) bit matrix
3. Eliminate zero-rows and prepend a header bitmap encoding the omitted rows

Word 0
Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7



0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0



T

=



0 0 1 1 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
0 0 1 0 1 0 0 1
1 0 1 0 0 0 1 0
1 0 1 0 0 1 0 0


⇌



1 0 0 0 1 1 1 1
0 0 1 1 0 0 1 0
1 0 0 0 1 0 0 0
0 0 1 0 1 0 0 1
1 0 1 0 0 0 1 0
1 0 1 0 0 1 0 0



Head
Bit 0
Bit 4
Bit 5
Bit 6
Bit 7

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 8



Vectorized Residual Value Encoding

Vertical bit packing is complex to implement efficiently, but operates at a 32-bit
granularity and requires little branching in the compaction step.

Naive implementation: 32× 32 nested loop with one shift+and+or per bit
Complexity, autovectorized: 772 (5398) instructions for single (double) precision.

Manually vectorized two-stage implementation:

1. Transpose equivalent 32× 4 byte matrix with permute+unpack vector operations
⇒ results in a 4× 32 matrix, where each element is an 8-bit column vector

2. For each output row, extract 32 bits in parallel using one shift+vpmovmskb
(move byte mask) operation each

Complexity: 124 (625) instructions for single (double) precision.

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 9



Thread Parallelism Between Blocks

Compression requires synchronization to determine output positions

m threadsm threadsm threadsm threads

0000101
0101000
0001010
1101111
0010111

0 0 0 0 1 0 1
0 1 0 1 0 0 0
0 0 0 1 0 1 0
1 1 0 1 1 1 1
0010111

Input Grid
Output Stream

Write buffer
free list

16 Pending writes
priority queue 358

is
queue.front()

next in
stream?

Transform
Transpose

Zero-Eliminate
Concatenate

Flush
yesno

Decompression can use simple work-sharing with meta-information from the compressor

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 10



Test Setup

Test Data from various scientific domains [5]:

dataset single double extent

msg_sppm ✓ ✓ 34,874,483
msg_sweep3d ✓ ✓ 15,716,403
snd_thunder ✓ 7,898,672
ts_gas ✓ 4,208,261
ts_wesad ✓ 4,588,553
hdr_night ✓ 8,192× 16,384
hdr_palermo ✓ 10,268× 20,536
hubble ✓ 6,036× 6,014
rsim ✓ ✓ 2,048× 11,509
spitzer_fls_irac ✓ 6,456× 6,389
spitzer_fls_vla ✓ 8,192× 8,192
spitzer_frontier ✓ 3,874× 2,694

dataset single double extent

asteroid ✓ 500× 500× 500
astro_mhd ✓ 128× 512× 1024
astro_mhd ✓ 130× 514× 1026
astro_pt ✓ ✓ 512× 256× 640
flow ✓ 16× 7,680× 1,0240
hurricane ✓ 100× 500× 500
magrecon ✓ 512× 512× 512
miranda ✓ 1,024× 1,024× 1,024
redsea ✓ ✓ 50× 500× 500
sma_disk ✓ 301× 369× 369
turbulence ✓ 256× 256× 256
wave ✓ ✓ 512× 512× 512

Hardware: AMD Ryzen 9 3900X (12 cores, 24 threads), 64 GB DDR4-3200 RAM

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 11



Approximation Quality of the Integer Lorenzo Transform

Integer approximation slightly
lowers the achieved compres-
sion ratio, but still profits from
higher dimensionality.

Recall
The Integer Lorenzo Transform is an approximation
of the floating-point Lorenzo predictor, necessary
for efficient parallel decompression.

0.75 0.80 0.85 0.90 0.95 1.00
Compression ratio relative to worst for this dimensionality (smaller is better)

XOR with predecessor
Subtract predecessor

XOR pseudo-Lorenzo Transform
Integer Lorenzo Transform (ndzip)

XOR with FP Lorenzo prediction
Subtract FP Lorenzo prediction

1D datasets
2D datasets
3D datasets

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 12



Compressor Efficiency

ndzip is 6× faster than the second-fastest specialized, parallel compressor pFPC

0.5

0.6

0.7

ar
ith

m
et

ic 
m

ea
n 

co
m

pr
es

sio
n 

ra
tio

sin
gle

 p
re

cis
ion

compression decompression

101 102 103 104

arithmetic mean uncompressed throughput [MB/s]

0.4

0.5

0.6do
ub

le 
pr

ec
isi

on

102 103 104

ndzip
ndzip (st)
Deflate
FPC
pFPC
fpzip
LZ4
LZMA
SPDP
Zstandard

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 13



Parallel Scaling

ndzip profits significantly from many-
threaded execution. Decompression,
which requires no synchronization, is the
most threading-friendly.

Reference: The throughput of optimized
memory-to-memory copy is 16.3 GB/s on
this system, as reported by the STREAM
benchmark. 1 102 3 4 6 20

number of threads

10

2

3
4

6

un
co

m
pr

es
se

d 
th

ro
ug

hp
ut

 [G
B/

s] 12 physical cores

single compression
single decompression
double compression
double decompression

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 14



Conclusion & Future Directions

ndzip is a novel, lossless block compression schemes for floating-point data.

For the targeted hardware, we demonstrated an implementation that achieves throughput
unprecedented by existing specialized floating-point compressors. This is achieved with

• A design that exposes data locality and multiple levels of parallelism
• The novel, data-parallel Integer Lorenzo Transform for decorrelation
• A hardware-friendly residual coding scheme

Future Directions
We are currently working on a GPU implementation, which profits from the same design
decisions. Stay tuned!

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 15



Part of the Celerity project

High-level C++ for Accelerator Clusters

1

ndzip was developed as part of the Celerity project, a distributed-memory runtime for
accelerator clusters. Celerity automatically derives communication and execution

schedules for programs while providing an expressive C++ API to the user.

1https://celerity.github.io

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 16

https://celerity.github.io


Thank You!

ndzip is available at https://github.com/fknorr/ndzip.

If you have questions, feel free to contact me at fabian@dps.uibk.ac.at.

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 16

https://github.com/fknorr/ndzip
mailto:fabian@dps.uibk.ac.at


References i

M. Burtscher and P. Ratanaworabhan.
FPC: A high-speed compressor for double-precision floating-point data.
IEEE Tr. on Computers, 58(1):18–31, 2008.

M. Burtscher and P. Ratanaworabhan.
pFPC: A parallel compressor for floating-point data.
In 2009 Data Compression Conference, pages 43–52. IEEE, 2009.

S. Claggett, S. Azimi, and M. Burtscher.
SPDP: An automatically synthesized lossless compression algorithm for
floating-point data.
In 2018 DCC, pages 335–344. IEEE, 2018.

L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak.
Out-of-core compression and decompression of large n-dimensional scalar fields.
In Computer Graphics Forum, volume 22, pages 343–348. Wiley Online Library, 2003.

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 17



References ii

F. Knorr, P. Thoman, and T. Fahringer.
Datasets for Benchmarking Floating-Point Compressors.
arXiv e-prints, page arXiv:2011.02849, Nov. 2020.

P. Lindstrom and M. Isenburg.
Fast and efficient compression of floating-point data.
IEEE Transactions on Vis. and Comp. graphics, 12(5):1245–1250, 2006.

A. Yang, H. Mukka, F. Hesaaraki, and M. Burtscher.
MPC: a massively parallel compression algorithm for scientific data.
In 2015 IEEE International Conference on Cluster Computing, pages 381–389. IEEE, 2015.

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 18


