2021 Data Compression Conference

ndzip

A High-Throughput Parallel Lossless
Compressor for Scientific Data

Fabian Knorr, Peter Thoman and Thomas Fahringer

Distributed and Parallel Systems Group
University of Innsbruck, Austria

M universitat
innsbruck

Introduction

Algorithms in High Performance Computing (HPC) commonly
work with large multi-dimensional grids of floating point data.
Some important algorithms are limited by network bandwidth.

- Distributed Matrix Transpose

- Cooley-Tukey Fast Fourier Transform

B8
Bisn
e

Data compression can transparently increase effective bandwidth.

- Must be lossless in the general case

- Saturating the interconnect requires high throughput

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 1

Specialized Floating-Point Compressors

General-purpose byte-oriented compressors are not a good fit for floating-point data.

- Grid data is often smooth, but values are still individually unique
- Effective decorrelation requires interpretation of the floating-point representation

- Most well known compressors have asymmetric performance

Typical building blocks of existing specialized compressors are:

1. Prediction of each floating point value, local or global
2. A difference operator yielding a residual from the prediction

3. An encoding scheme favoring small residuals.

Existing specialized algorithms [6][3][1][2] are either trading throughput for higher
compression ratios or are not optimized for modern hardware.

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 2

ndzip is a novel, lossless block compression scheme for multi-dimensional grids of
univariate floating-point data.

Its design enables efficient, highly parallel implementation on modern hardware through

- Locality: values are decorrelated only from direct neighbors
- Parallelism: coarse-grained between blocks, fine-grained within compression stages

- Dimensionality-awareness: grid size is an input for multidimensional decorrelation

We present the ndzip algorithm and an implementation on x86_64 hardware using the
AVX2 vector extension.

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 3

ndzip Compression Pipeline

ndzip subdivides the grid into fixed-size blocks, which are compressed independently.

N
Zero-Position Bitmap
s e | % i
e 2 T 1
2 = 000100 000101 ; 101101
n 000001 000101
7 5 - J >S_' Eu _>._> 100101 _’110111 010000
< EO 000101 -©-6-6-6-66- \ 110111
g 2 100101 001111 | 7 |501111
%2 o
'_ H
Non-Zero Words
Y J
Block Integer Lorenzo Chunk Bit Matrix Zero-Word Conca-
Subdivision Transform Subdivision Transposition Elimination tenation

Decompression simply reverses each compression step; ndzip is symmetric.

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 4

The Lorenzo Predictor [4]

Predict values from all known neighbors in a length-2 hypercube:

1D 2D 3D

@ positive coefficient
® negative coefficient
© prediction

Very effective [6], but
l i } reconstruction during
decompression limits

=1 =-14+2+3 =1-2-3+4 .
P b P parallelism.

=4 -5+6+7=28

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 5

New: Integer Lorenzo Transform

Calculating the prediction residuals directly without an intermediate step yields a
separable transform in the multi-dimensional case.

1D 2D 3D

@ positive coefficient
@ negative coefficient
© truevalue

6
L 4] 78 Since this transform is not
l l _*) reversible in floating-point
arithmetic, it is approximated
} 6| in the integer domain.

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 6

Vectorized Integer Lorenzo Transform

The Integer Lorenzo Transform is separable: An n-dimensional transform is equivalent to
performing a one-dimensional transform along each of the n dimensions.

Forward Transform e N
>>>>>> 8
The forward transform is fully parallel in each dimension. Each II‘II &
vector instruction computes 8 single-precision or 44444l
4 double-precision deltas simultaneously. 000008 ™
difference
Inverse Transform
. 566668 —~
The inverse transform has a dependence on the predecessor value eSS 1
fn each row. Separab.|l|ty egposes n —1dimensions of parallelism —D— ©
in each step. The 1-dimensional case cannot be efficiently 00004 I
) . & A A A a
parallelized on this hardware.
prefix sum

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 7

Residual Value Encoding

Small integer residuals have many redundant sign bits, which can be encoded efficiently
using the vertical bit-packing scheme introduced in [7].

1. Turn redundant bits into zero-bits with a sign-magnitude representation

2. For each 32- (64-) word block, transpose the 32 x 32 (64 x 64) bit matrix

3. Eliminate zero-rows and prepend a header bitmap encoding the omitted rows

wordo [0 1011'T [00110010]

word1 | 0 0000 17000111 1] Head
word2 |1 0111 00110010/ Bito
Word3 |1 0000| _ __|10001000]| Bits
Word4 | 0 17100| ~ |170001000| ° |00101001 3it 5
words |0 000 1 00101001 170100010]| Bité
Word6 | 1 0010 170100010 170100100 Bit7
word7 |0 0100 170100100

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 8

Vectorized Residual Value Encoding

Vertical bit packing is complex to implement efficiently, but operates at a 32-bit
granularity and requires little branching in the compaction step.

Naive implementation: 32 x 32 nested loop with one shift+and+or per bit

Complexity, autovectorized: 772 (5398) instructions for single (double) precision.

Manually vectorized two-stage implementation:

1. Transpose equivalent 32 x 4 byte matrix with permute+unpack vector operations
= results in a 4 x 32 matrix, where each element is an 8-bit column vector

2. For each output row, extract 32 bits in parallel using one shift+vpmovmskb
(move byte mask) operation each

Complexity: 124 (625) instructions for single (double) precision.

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 9

Thread Parallelism Between Blocks

Compression requires synchronization to determine output positions

....... Pending writes 8 8 8 B
priority queue

. Output Stream
Input Grid : P
Transform Y
P I ~| _ Transpose Flush fbeeoeees > 0000101
Zero-Eliminate 0101000
0001010
Concatenate 1101111
m, threads 0010111

X

8‘ Wi bufer 07 8
free list

Decompression can use simple work-sharing with meta-information from the compressor

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 10

dataset single double extent
msg_sppm v v 34,874,483
msg_sweep3d v v 15,716,403
snd_thunder v 7,898,672
ts_gas v 4,208,261
ts_wesad v 4,588,553
hdr_night v 8,192 x 16,384
hdr_palermo v 10,268 x 20,536
hubble v 6,036 x 6,014
rsim v Vv 2,048 x 11,509
spitzer_fls_irac v 6,456 x 6,389
spitzer_fls_vla v 8,192 x 8,192
spitzer_frontier 3,874 x 2,694

dataset single double extent
asteroid v 500 x 500 x 500
astro_mhd v 128 x 512 x 1024
astro_mhd v 130 x 514 x 1026
astro_pt v 512 x 256 x 640
flow v 16 x 7,680 x 1,0240
hurricane v 100 x 500 x 500
magrecon v 512 x 512 x 512
miranda v 1,024 x 1,024 x 1,024
redsea v v 50 x 500 x 500
sma_disk v 301 x 369 x 369
turbulence v 256 x 256 x 256
wave v v 512 x 512 x 512

Hardware: AMD Ryzen 9 3900X (12 cores, 24 threads), 64 GB DDR4-3200 RAM

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data

Test Setup

Test Data from various scientific domains [5]:

i

Approximation Quality of the Integer Lorenzo Transform

Integer approximation slightly Recall

lQWGFS Fhe achieyed compres- The Integer Lorenzo Transform is an approximation
5|~on ratlg, but ?UU proﬁts from of the floating-point Lorenzo predictor, necessary
higher dimensionality. for efficient parallel decompression.

XOR with predecessor

Subtract predecessor
1D datasets

|
I 2D datasets
I 3D datasets

XOR pseudo-Lorenzo Transform

Integer Lorenzo Transform (ndzip)

XOR with FP Lorenzo prediction

Subtract FP Lorenzo prediction

I T T T T 1
0.75 0.80 0.85 0.90 0.95 1.00
Compression ratio relative to worst for this dimensionality (smaller is better)

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 12

Compressor Efficie

ndzip is 6x faster than the second-fastest specialized, parallel compressor pFPC

compression

decompression

arithmetic mean uncompressed throughput [MB/s]

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data

@ 9

O &

D = X X

= s 0.6

= — ~

31 \)

= 2 0.7

n Lg) [] []

c & 044 — s

.0 g

%]

g g l\\

5 805+ |

2 £ \ X \\ X

g © —— ~

o 0.6

-] . °
10! 102 103 104 102 103 104

ndzip
ndzip (st)
Deflate
FPC
pFPC
fpzip

LZ4
LZMA
SPDP
Zstandard

Parallel Scaling

ndzip profits significantly from many-
threaded execution. Decompression,
which requires no synchronization, is the

most threading-friendly.
4 B
Reference: The throughput of optimized 3 single compression

—+— single decompression
2 —+— double compression
—+— double decompression

memory-to-memory copy is 16.3 GB/s on
this system, as reported by the STREAM
benchmark. i > 3 4 6 "1'0 20

number of threads

uncompressed throughput [GB/s]

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 14

Conclusion & Future Directions

ndzip is a novel, lossless block compression schemes for floating-point data.
For the targeted hardware, we demonstrated an implementation that achieves throughput
unprecedented by existing specialized floating-point compressors. This is achieved with

- A design that exposes data locality and multiple levels of parallelism

- The novel, data-parallel Integer Lorenzo Transform for decorrelation

- A hardware-friendly residual coding scheme

Future Directions

We are currently working on a GPU implementation, which profits from the same design
decisions. Stay tuned!

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 15

_ Celerity

High-level C++ for Accelerator Clusters

ndzip was developed as part of the Celerity project, a distributed-memory runtime for
accelerator clusters. Celerity automatically derives communication and execution
schedules for programs while providing an expressive C++ API to the user.

M universitat
Distributed and Parallel Systems I n n S b ru C k

Thttps://celerity.github.io

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 16

https://celerity.github.io

Thank You!

ndzip is available at https://github.com/fknorr/ndzip.

If you have questions, feel free to contact me at fabianadps.uibk.ac.at.

https://github.com/fknorr/ndzip
mailto:fabian@dps.uibk.ac.at

References i

[3 M. Burtscher and P. Ratanaworabhan.
FPC: A high-speed compressor for double-precision floating-point data.
IEEE Tr. on Computers, 58(1):18-31, 2008.

[M. Burtscher and P. Ratanaworabhan.
pFPC: A parallel compressor for floating-point data.
In 2009 Data Compression Conference, pages 43-52. IEEE, 2009.

[@ s.Claggett, S. Azimi, and M. Burtscher.
SPDP: An automatically synthesized lossless compression algorithm for
floating-point data.
In 2018 DCC, pages 335-344. IEEE, 2018.

@ L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak.
Out-of-core compression and decompression of large n-dimensional scalar fields.
In Computer Graphics Forum, volume 22, pages 343-348. Wiley Online Library, 2003.

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 17

References ii

@ F. Knorr, P. Thoman, and T. Fahringer.
Datasets for Benchmarking Floating-Point Compressors.
arXiv e-prints, page arxiv:2011.02849, Nov. 2020.

[@ P Lindstrom and M. Isenburg.
Fast and efficient compression of floating-point data.
IEEE Transactions on Vis. and Comp. graphics, 12(5):1245-1250, 2006.

@ A.Yang, H. Mukka, F. Hesaaraki, and M. Burtscher.
MPC: a massively parallel compression algorithm for scientific data.
In 2015 IEEE International Conference on Cluster Computing, pages 381-389. IEEE, 2015.

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 18

