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Introduction

Algorithms in High Performance Computing (HPC) commonly
work with large multi-dimensional grids of floating point data.
Some important algorithms are limited by network bandwidth.

• Distributed Matrix Transpose
• Cooley-Tukey Fast Fourier Transform
• …

Data compression can transparently increase effective bandwidth.

• Must be lossless in the general case
• Saturating the interconnect requires high throughput
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Specialized Floating-Point Compressors

General-purpose byte-oriented compressors are not a good fit for floating-point data.

• Grid data is often smooth, but values are still individually unique
• Effective decorrelation requires interpretation of the floating-point representation
• Most well known compressors have asymmetric performance

Typical building blocks of existing specialized compressors are:

1. Prediction of each floating point value, local or global
2. A difference operator yielding a residual from the prediction
3. An encoding scheme favoring small residuals.

Existing specialized algorithms [6][3][1][2] are either trading throughput for higher
compression ratios or are not optimized for modern hardware.
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ndzip Overview

ndzip is a novel, lossless block compression scheme for multi-dimensional grids of
univariate floating-point data.

Its design enables efficient, highly parallel implementation on modern hardware through

• Locality: values are decorrelated only from direct neighbors
• Parallelism: coarse-grained between blocks, fine-grained within compression stages
• Dimensionality-awareness: grid size is an input for multidimensional decorrelation

We present the ndzip algorithm and an implementation on x86_64 hardware using the
AVX2 vector extension.
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ndzip Compression Pipeline

ndzip subdivides the grid into fixed-size blocks, which are compressed independently.
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Decompression simply reverses each compression step; ndzip is symmetric.
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The Lorenzo Predictor [4]

Predict values from all known neighbors in a length-2 hypercube:
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Very effective [6], but
reconstruction during
decompression limits
parallelism.
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New: Integer Lorenzo Transform

Calculating the prediction residuals directly without an intermediate step yields a
separable transform in the multi-dimensional case.
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Since this transform is not
reversible in floating-point
arithmetic, it is approximated
in the integer domain.
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Vectorized Integer Lorenzo Transform

The Integer Lorenzo Transform is separable: An n-dimensional transform is equivalent to
performing a one-dimensional transform along each of the n dimensions.

Forward Transform

The forward transform is fully parallel in each dimension. Each
vector instruction computes 8 single-precision or
4 double-precision deltas simultaneously.
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Inverse Transform

The inverse transform has a dependence on the predecessor value
in each row. Separability exposes n− 1 dimensions of parallelism
in each step. The 1-dimensional case cannot be efficiently
parallelized on this hardware.
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Residual Value Encoding

Small integer residuals have many redundant sign bits, which can be encoded efficiently
using the vertical bit-packing scheme introduced in [7].

1. Turn redundant bits into zero-bits with a sign-magnitude representation
2. For each 32- (64-) word block, transpose the 32× 32 (64× 64) bit matrix
3. Eliminate zero-rows and prepend a header bitmap encoding the omitted rows
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Vectorized Residual Value Encoding

Vertical bit packing is complex to implement efficiently, but operates at a 32-bit
granularity and requires little branching in the compaction step.

Naive implementation: 32× 32 nested loop with one shift+and+or per bit
Complexity, autovectorized: 772 (5398) instructions for single (double) precision.

Manually vectorized two-stage implementation:

1. Transpose equivalent 32× 4 byte matrix with permute+unpack vector operations
⇒ results in a 4× 32 matrix, where each element is an 8-bit column vector

2. For each output row, extract 32 bits in parallel using one shift+vpmovmskb
(move byte mask) operation each

Complexity: 124 (625) instructions for single (double) precision.
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Thread Parallelism Between Blocks

Compression requires synchronization to determine output positions
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Decompression can use simple work-sharing with meta-information from the compressor
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Test Setup

Test Data from various scientific domains [5]:

dataset single double extent

msg_sppm ✓ ✓ 34,874,483
msg_sweep3d ✓ ✓ 15,716,403
snd_thunder ✓ 7,898,672
ts_gas ✓ 4,208,261
ts_wesad ✓ 4,588,553
hdr_night ✓ 8,192× 16,384
hdr_palermo ✓ 10,268× 20,536
hubble ✓ 6,036× 6,014
rsim ✓ ✓ 2,048× 11,509
spitzer_fls_irac ✓ 6,456× 6,389
spitzer_fls_vla ✓ 8,192× 8,192
spitzer_frontier ✓ 3,874× 2,694

dataset single double extent

asteroid ✓ 500× 500× 500
astro_mhd ✓ 128× 512× 1024
astro_mhd ✓ 130× 514× 1026
astro_pt ✓ ✓ 512× 256× 640
flow ✓ 16× 7,680× 1,0240
hurricane ✓ 100× 500× 500
magrecon ✓ 512× 512× 512
miranda ✓ 1,024× 1,024× 1,024
redsea ✓ ✓ 50× 500× 500
sma_disk ✓ 301× 369× 369
turbulence ✓ 256× 256× 256
wave ✓ ✓ 512× 512× 512

Hardware: AMD Ryzen 9 3900X (12 cores, 24 threads), 64 GB DDR4-3200 RAM
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Approximation Quality of the Integer Lorenzo Transform

Integer approximation slightly
lowers the achieved compres-
sion ratio, but still profits from
higher dimensionality.

Recall
The Integer Lorenzo Transform is an approximation
of the floating-point Lorenzo predictor, necessary
for efficient parallel decompression.
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Compressor Efficiency

ndzip is 6× faster than the second-fastest specialized, parallel compressor pFPC

0.5

0.6

0.7

ar
ith

m
et

ic 
m

ea
n 

co
m

pr
es

sio
n 

ra
tio

sin
gle

 p
re

cis
ion

compression decompression

101 102 103 104

arithmetic mean uncompressed throughput [MB/s]

0.4

0.5

0.6do
ub

le 
pr

ec
isi

on

102 103 104

ndzip
ndzip (st)
Deflate
FPC
pFPC
fpzip
LZ4
LZMA
SPDP
Zstandard

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data 13



Parallel Scaling

ndzip profits significantly from many-
threaded execution. Decompression,
which requires no synchronization, is the
most threading-friendly.

Reference: The throughput of optimized
memory-to-memory copy is 16.3 GB/s on
this system, as reported by the STREAM
benchmark. 1 102 3 4 6 20
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Conclusion & Future Directions

ndzip is a novel, lossless block compression schemes for floating-point data.

For the targeted hardware, we demonstrated an implementation that achieves throughput
unprecedented by existing specialized floating-point compressors. This is achieved with

• A design that exposes data locality and multiple levels of parallelism
• The novel, data-parallel Integer Lorenzo Transform for decorrelation
• A hardware-friendly residual coding scheme

Future Directions
We are currently working on a GPU implementation, which profits from the same design
decisions. Stay tuned!
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Part of the Celerity project

High-level C++ for Accelerator Clusters

1

ndzip was developed as part of the Celerity project, a distributed-memory runtime for
accelerator clusters. Celerity automatically derives communication and execution

schedules for programs while providing an expressive C++ API to the user.

1https://celerity.github.io
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Thank You!

ndzip is available at https://github.com/fknorr/ndzip.

If you have questions, feel free to contact me at fabian@dps.uibk.ac.at.
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