Compressing Deep Networks Using Fisher Score of Feature Maps

Mohammadreza Soltani

Duke University

- 1. Introduction
- 2. Gradient Information
- 3. Proposed Pruning Algorithm
- 4. Experimental Results

INTRODUCTION

DEEP NEURAL NETWORKS

A CNN sequence to classify handwritten digits

• Source: google image.

MOTIVATION AND PROBLEM STATEMENT

- Energy consumption for limited-resource embedded systems
- Very large Memory for saving the weights of a model
- Huge amount of computation for product operation
- For example, under 45nm CMOS technology,
 - A 32bit floating point add consumes 0.9pJ
 - A 32bit SRAM cache access requires 5pJ
 - A 32bit DRAM memory access takes 640pJ
- Running a 1 billion connection neural network, for example, at 20 fps needs almost 13W power just for DRAM!!!
- Need to compress model for deployment and fast inference running-time

- Robustness of deep architectures with *skip-connection* against coarse pruning
 - Removing a random layer doesn't hurt the performance.
 - Removing the models without *skip-connection* drops the performance dramatically.
- $\cdot\,$ Our focus is to investigate this phenomenon in more depth
- Studying two prominent examples of models with *skip-connection*: Resnet and DenseNet

- A *skip-unit* is defined as a set of layers, and each layer consists of sequential operations including *Conv*, *Pooling*, *ReLU*, *BN*, *Dropout*, etc.
- A skip-units is mathematically defined as

$$U_{\ell} = \Psi(T_{\ell}, U_{1:\ell-1}, \alpha_{\ell}), \quad \ell = 1, 2, \dots, L,$$

- $U_{1:\ell-1}$, the input of ℓ -th unit
- $T_{\ell} = f_{\ell}(U_{\ell-1})$, the output in the skip-unit
- $\cdot f_\ell$, the composition of aforementioned operations
- α_{ℓ} 's are binary variables and Ψ denotes an operation that combines T_{ℓ} and $U_{1:\ell-1}$.

RESNET AND DENSENET

• ResNet architecture Ψ_{res} and DenseNet architecture Ψ_{den} are respectively given by:

$$U_{\ell} = \Psi_{res}(T_{\ell}, U_{\ell:\ell-1}, \alpha_{\ell}) = \alpha_{\ell}T_{\ell} + \mathcal{A}_{\ell-1}U_{\ell-1},$$

 $U_{\ell} = \Psi_{den}(T_{\ell}, U_{\ell:\ell-1}, \alpha_{\ell}) = \text{Concat}(\alpha_{\ell}T_{\ell}, U_{1:\ell-1}),$

- Concat is the concatenation operation.
- · $\mathcal{A}_{\ell-1}$ is an identity or a convolution operator.

Figure 1: Two consecutive skip-units in a ResNet (top) and DesNet (bottom) family, respectively.

Compressing skip-units models: Pruning the model by removing the redundant skip-units based on their learned information.

- 1. How to study the learned features?
- 2. How to capture the information in the learned features?
- 3. How to quantify the redundant the skip-units?

Shannon Mutual Information? Mutual Information is the measure of informativeness. However,

- Computationally challenging task to estimate Mutual Information in a high-dimensional feature space
- Proper assumption on the underlying probability distribution
- Using the gradient information instead of mutual information for measuring the information learned in the intermediate layers of a deep model
- The same properties of the Mutual Information; however, computationally more efficient

After computing the information of units:

- Clustering the units based on their gradient information
- Keeping only the cluster heads ($\alpha = 1$)
- Removing other units in each cluster ($\alpha = 0$)

GRADIENT INFORMATION

• The gradient information is proposed based on the Hyvarinen loss with respect to an input *x* with density function *p* which is given by [Hyvarinen, 2005.]:

$$s_{H}(x,p) = \frac{1}{2} \left\| \nabla_{x} \log p(x) \right\|^{2} + \Delta_{x} \log p(x),$$

where abla denotes the gradient and Δ denotes the Laplacian.

• The expectation of the Hyvarien loss of a probability density $q(\cdot)$ w.r.t the another distribution $p(\cdot)$ can be reformulated as: $\mathbb{E}_p \{ s_H(x,q) \} = D_F(p,q) - \frac{1}{2} \mathbb{E}_p \| \nabla_y \log q(x) \|^2$, where $D_F(p,q)$ is the Fisher divergence given by:

$$D_{\mathrm{F}}(p,q) = \frac{1}{2} \int_{\mathbb{R}^d} \|\nabla_x \log q(x) - \nabla_x \log p(x)\|^2 p(x) dx.$$

Definition (Gradient information [Ding et al., 2019.])

Consider continuous random variables *T* and *Y* with marginal density functions p_T and p_Y , respectively as well as the joint density p_{TY} . The information quantity is defined as $(T, Y) = D_F(p_{TY}, p_T p_Y)$.

Definition (Fisher score)

Given the random variables $T \in^d$ and $Y \in \mathcal{Y}$, with $\mathcal{Y} = \{1, 2, \cdots, p\}$, the Fisher score between T and Y is defined as

$$F(T, Y) = \max_{1 \leq i,j \leq p} D_F(p_i, p_j),$$

where p_i denotes the densities of *T* conditional on Y = i, and D_F denotes the gradient information in the above definition.

PROPOSED PRUNING ALGORITHM

PRUNING ALGORITHM

Algorithm 1

INPUT:

DNN⁰: Pre-trained Deep Neural Network S⁰: The index set of skip-units in **DNN**⁰ T_l : Feature maps, $l = 1, 2, ..., |S^0|$ K^t : Cluster vector, $t = 0, 1, \ldots, N - 1$ N: Number of stages for t = 0, 1, ..., N - 1 do Compute Fisher scores, $F(T_l^t, Y)$, $l = 1, ..., |S^t|$ using **DNN**^t $\begin{aligned} & \text{Construct } \mathbf{F}^{t} = [F(T_{1}^{t}, Y), F(T_{2}^{t}, Y), \dots, F(T_{|\mathcal{K}^{t}|}^{t}, Y)] \\ & \{\textit{Cluster}_{1}^{K_{1}^{t}}, \dots, \textit{Cluster}_{|\mathcal{K}^{t}|}^{K_{1}^{t}}, \dots, \textit{Cluster}_{1}^{|\mathcal{K}^{t}|}, \dots, \textit{Cluster}_{K_{t}^{t}, t}^{t}] \} = \text{Clustering}(K^{t}, \mathbf{F}^{t}, S^{t}) \end{aligned}$ for k in K^t do for i = 1, 2, ..., k do $a_c = 1$, c = cluster centroid index $a_u = 0, \forall u \in Cluster_i^k \setminus c$ end for Compute $Train_{err}^{k}$ for given k end for Select $k_*^t =_{k \in K^t} Train_{err}^k$ Update S^t by keeping only k_{\pm}^t units and remove the rest of units Update **DNN**^t by re-training the model with $k_{*}^{t} = |S^{t}|$ units with weights initialized in stage t end for

Return pruned model with $|S^{N-1}|$ active skip-units

EXPERIMENTAL RESULTS

1. Datasets:

Dataset	Train data	Test data	Image Size	Classes
CIFAR-10	50000	10000	$32 \times 32 \times 3$	10
CIFAR-100	50000	10000	$32 \times 32 \times 3$	100
SVHN	73257	26032	$32 \times 32 \times 3$	10

2. Model architectures (based on CIFAR-10 data set):

Model	Units	Layers	Param. (M)	FLOPs (M)
ResNet-56	[9, 9, 9]	56	0.85	126.55
ResNet-110	[18, 18, 18]	164	1.73	254.00
DenseNet-100	[16, 16, 16]	100	0.77	296.50

Model	Test Accuracy	Param. (M)	FLOPs (M)	Red.(%)
ResNet-56 (full)	0.9334	0.85	126.55	-
ResNet-56 (N=7)	0.9331	0.21	48.15	74.89
ResNet-110 (full)	0.9387	1.73	254.00	-
ResNet-110 (N=6)	0.9379	0.31	94.68	81.95
DenseNet-100-k12 (full)	0.9559	0.77	296.50	-
DenseNet100-k12 (N=7)	0.9470	0.36	181.72	52.74

Table 1: The results of pruning various DNNs on CIFAR-10 data set. Red (%)has been calculated in terms of number of parameters.

Model	Test Accuracy	Param. (M)	FLOPs (M)	Red.(%)
ResNet-56 (full)	0.9334	0.86	127.00	-
ResNet-56 (N=6)	0.7134	0.36	61.55	58.57
ResNet-110 (full)	0.7289	1.74	255.00	-
ResNet-110 (N=7)	0.7300	0.50	123.26	71.26

Table 2: The results of pruning various DNNs on CIFAR-100 data set. Red (%)has been calculated in terms of number of parameters.