Equalization?

- tion constellations.

Setup:

$$g_n = \sum_{k=1}^2 w_n^{(k)} * h_n^{(k)}.$$

• Perfect Equalization Condition: $g_n = \delta_{n-d}$.

COMPRESSED TRAINING ADAPTIVE EQUALIZATION Baki B. Yılmaz, Alper T. Erdogan Koc University, Istanbul, Turkey

• λ is the regularization parameter.

Connection to Compressed Sensing

• For the noiseless scenario, z_n can be written as :

 $z_n = g_0 s_n + g_1 s_{n-1} + \dots g_{L_G - 1} s_{n-L_G + 1},$

• For *sufficiently long* data packet and BPSK constellation,

 $\|\mathbf{z}\|_{\infty} = \|\mathbf{g}\|_1.$ (1)

• The corresponding dual optimization setting:

Setting Ig	
minimize	$\ \mathbf{g}\ _1$
subject to	$\mathbf{Sg} = \mathbf{s}_T$

• We observe *Setting I* is equivalent to *Sparse Reconstruc*tion Problem if we consider

- $-\mathbf{s}_T$ as the observation vector,
- $-\mathbf{S}$ as the measurement matrix and,

 $-\mathbf{g}$ as the one-sparse vector to be reconstructed.

Analysis of the Proposed Approach

• The mutual coherence of the matrix $\mathbf{S} \in \Re^{L_T \times L_G}$ is defined

• **Theorem**[2]: Let $\mathbf{S} \in \Re^{L_T \times L_G}$ be full rank with $L_T < L_G$. If the system of linear equations $\mathbf{Sg} = \mathbf{y}$ has a solution \mathbf{g}_s

$$\|\mathbf{g}_s\|_0 < 0.5 \left(1 + \mu(\mathbf{S})^{-1}\right)$$

then it is the unique solution for the optimization problem

COROLLARY

Let $\mathbf{S} \in \Re^{L_T \times L_G}$ be a Toeplitz matrix with i.i.d. Bernoulli elements. If $\mathbf{L}_{\mathbf{T}} > \log_2(\mathbf{L}_{\mathbf{G}}(\mathbf{L}_{\mathbf{G}} - \mathbf{1}))$, then the mutual coherence condition $\mu(\mathbf{S}) < 1$ is satisfied with probability at least $1 - L_G(L_G - 1) \cdot 2^{-L_T}$.

CONCLUSION

• We introduced convex optimization based Adaptive Equalization Framework that reduces training data to $\mathcal{O}(\log(\text{Channel-Spread}))$ as opposed to $\mathcal{O}(\text{Channel-Spread}).$

• A duality based link between the proposed approach and compressed sensing is established.

- ror Performances:

• SNR is chosen as 25dB,

macros v2.1.