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What is Compressed Training Adaptive

Equalization?

The Proposed Framework

J

e An adaptive equalization framework aiming to re-
duce the number of training symbols in a communication

packet. The equalizer coefficients are trained by exploiting

— Training symbols,
— Magnitude boundedness property of digital communica-

tion constellations.

Highlights of the Framework

e Direct Link with Compressed Sensing,
e Reduce Training Length,

e Prescribe

Minimum Training Length o< log( Channel Spread)

~

e Algorithms Based on Convex Settings,

e DO NOT Make Sparse Channel Assumption.

[ Equalization Setup

e We assume the standard Fractionally-Spaced Equalization

Setup:
(1)
Un

(2) (2)

e The receiver employs two (WLOG) diversity branches,
e {s,} : Transmission sequence sent by the transmitter,

e For the receiver branch k:
—{hff):ne {O,...,Lg—l}}
sponse,

— {wff) n€{0,...,Lg— 1}} . Equalizer coefficients,

Channel impulse re-

— {yf@k)} . Received signal,
e {2,} is the equalizer output sequence,

e {g,} : Combined channel impulse response where

2

e Perfect Equalization Condition: g, = 9,,_4.

Noiseless/High SNR, Case:

e The proposed optimization setting :

Setting [

|z oo

subject to Y7w = st

minimize

e 7z : Vector containing all equalizer outputs for the whole

packet,

e Y : Equalizer input vectors corresponding to the training

region,
e s : Training symbols,

e w : Equalizer coefficient vector.
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Noisy Case:

e The optimization setting factoring existence of noise:

Setting {~o- CLASSO

minimize ||[Y7w — s7||2

subject to  ||z||co <

e ~ represents the knowledge about the symbol boundedness.

e Alternative convex optimization setting for the noisy case:

Setting bog — o - LASSO

minimize ||[Y7w — spllo + A||z|| 0o

e )\ is the regularization parameter.

Connection to Compressed Sensing

e For the noiseless scenario, z, can be written as :

Zn = goSn + 91Sp—1 t+ . .. JLo—15n—Lo+1,

e For sufficiently long data packet and BPSK constellation,

||l = [Ig]l1- (1)

e The corresponding dual optimization setting:

Setting Iqg

minimize

Igll1
subject to Sg = s

e We observe Setting I is equivalent to Sparse Reconstruc-
tion Problem if we consider
— s as the observation vector,
— S as the measurement matrix and,

— g as the one-sparse vector to be reconstructed.

[ Analysis of the Proposed Approach

e The mutual coherence of tl%e matrix S € RLr>*Le is defined
’S;,is:,j’

IS. ill21IS. ;ll2”

s p(S) = max

e Theorem|[2] : Let S € RI7>*LG be full rank with Ly < Lg.

If the system of linear equations Sg = y has a solution g

which obeys

Jeullo < 0.5 (1+ u(8) ™)

then it is the unique solution for the optimization problem

in Setting Ig.

COROLLARY

Let S € RFr*Le be a Toeplitz matrix with i.i.d. Bernoulli
elements. If Lt > log, (Lg(Lg — 1)), then the mutual
coherence condition p(S) < 1 is satisfied with probability

at least 1 — Lg(Lg — 1) - 2717

CONCLUSION

e We introduced convex optimization based Adap-
tive Equalization Framework that reduces training

data to O(log(Channel-Spread)) as opposed to
O(Channel-Spread).

e A duality based link between the proposed approach

and compressed sensing is established.

j [ Noiseless Case Communication Example j

e Channel Length=15 and Equalizer Length=20,
e Success probability is defined as ||g. — €1l < 1072,
e Comparison with the algorithm in [4](CMA+LS),

e Fmpirical probability vs. the bounds and Mean Square Er-

ror Performances:
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[ Noisy Case Communication Example

e SNR is chosen as 25d B,

e Compared with least squares and the blind algorithm in [5]:
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