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What is Compressed Training Adaptive

Equalization?

• An adaptive equalization framework aiming to re-

duce the number of training symbols in a communication

packet. The equalizer coefficients are trained by exploiting

– Training symbols,

– Magnitude boundedness property of digital communica-

tion constellations.

Highlights of the Framework

• Direct Link with Compressed Sensing,

• Reduce Training Length,

• Prescribe

Minimum Training Length ∝ log( Channel Spread) ,

• Algorithms Based on Convex Settings,

• DO NOT Make Sparse Channel Assumption.
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Equalization Setup

• We assume the standard Fractionally-Spaced Equalization

Setup:

• The receiver employs two (WLOG) diversity branches,

• {sn} : Transmission sequence sent by the transmitter,

• For the receiver branch k:

–
{
h(k)
n : n ∈ {0, . . . , LC − 1}

}
: Channel impulse re-

sponse,

–
{
w(k)

n : n ∈ {0, . . . , LE − 1}
}
: Equalizer coefficients,

– {y(k)n } : Received signal,

• {zn} is the equalizer output sequence,

• {gn} : Combined channel impulse response where

gn =
2∑

k=1

w(k)
n ∗ h(k)

n .

• Perfect Equalization Condition: gn = δn−d.
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The Proposed Framework

Noiseless/High SNR Case:

• The proposed optimization setting :

Setting I

minimize ∥z∥∞
subject to YTw = sT

• z : Vector containing all equalizer outputs for the whole

packet,

• YT : Equalizer input vectors corresponding to the training

region,

• sT : Training symbols,

• w : Equalizer coefficient vector.

Noisy Case:

• The optimization setting factoring existence of noise:

Setting ℓ∞- CLASSO

minimize ∥YTw − sT∥2
subject to ∥z∥∞ ≤ γ

• γ represents the knowledge about the symbol boundedness.

• Alternative convex optimization setting for the noisy case:

Setting ℓ∞ − ℓ2 - LASSO

minimize ∥YTw − sT∥2 + λ∥z∥∞

• λ is the regularization parameter.

✗

✖

✔

✕
Connection to Compressed Sensing

• For the noiseless scenario, zn can be written as :

zn = g0sn + g1sn−1 + . . . gLG−1sn−LG+1,

• For sufficiently long data packet and BPSK constellation,

∥z∥∞ = ∥g∥1. (1)

• The corresponding dual optimization setting:

Setting Ig

minimize ∥g∥1
subject to Sg = sT

• We observe Setting I is equivalent to Sparse Reconstruc-

tion Problem if we consider

– sT as the observation vector,

– S as the measurement matrix and,

– g as the one-sparse vector to be reconstructed.
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Analysis of the Proposed Approach

• The mutual coherence of the matrix S ∈ ℜLT×LG is defined

as µ(S) = max
1≤i,j≤M,i ̸=j

|ST:,iS:,j|
∥S:,i∥2∥S:,j∥2

.

• Theorem[2] : Let S ∈ ℜLT×LG be full rank with LT < LG.

If the system of linear equations Sg = y has a solution gs

which obeys

∥gs∥0 < 0.5
(
1 + µ(S)−1

)

then it is the unique solution for the optimization problem

in Setting Ig.

COROLLARY
Let S ∈ ℜLT×LG be a Toeplitz matrix with i.i.d. Bernoulli

elements. If LT > log2 (LG(LG − 1)), then the mutual

coherence condition µ(S) < 1 is satisfied with probability

at least 1− LG(LG − 1) · 2−LT .

CONCLUSION
• We introduced convex optimization based Adap-

tive Equalization Framework that reduces training

data to O(log(Channel-Spread)) as opposed to

O(Channel-Spread).

• A duality based link between the proposed approach

and compressed sensing is established.
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Noiseless Case Communication Example

• Channel Length=15 and Equalizer Length=20,

• Success probability is defined as ∥g∗ − ed+1∥2 ≤ 10−5,

• Comparison with the algorithm in [4](CMA+LS),

• Empirical probability vs. the bounds and Mean Square Er-

ror Performances:

��
5 10 15 20

Pr
ob
ab
ili
ty

0

0.2

0.4

0.6

0.8

1

���� � ����� � ��
�	
�� �
�	
�� 
�
����� ��	��������

��

5 10 15 20 25 30 35 40

M
SE

(d
B)

-250

-200

-150

-100

-50

0

50

100
Setting I,       LD=300
CMA-LS[4], LD=300
Setting I,       LD=1000
CMA-LS[4], LD=1000
Setting Ig

✗

✖

✔

✕
Noisy Case Communication Example

• SNR is chosen as 25dB,

• Compared with least squares and the blind algorithm in [5]:
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