
A grammar compressor for collections of reads with
applications to the construction of the BWT

Diego Díaz-Domínguez Gonzalo Navarro

Department of Computer Science
University of Chile

Centre for Biotechnology and Bioengineering (CeBiB)
University of Chile

Data Compression Conference, March 2021

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 1 / 15

Motivation

In Genomics, sequencing reads are massive and repetitive string collections of raw
DNA sequences

Read collections can be much more massive than assembled genomes

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 2 / 15

Motivation

In Genomics, sequencing reads are massive and repetitive string collections of raw
DNA sequences

Assembled
Genome

Read collections can be much more massive than assembled genomes

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 2 / 15

Motivation

In Genomics, sequencing reads are massive and repetitive string collections of raw
DNA sequences

Sequencing
Reads

Coverage = 3x

Assembled
Genome

Read collections can be much more massive than assembled genomes

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 2 / 15

Motivation

In Genomics, sequencing reads are massive and repetitive string collections of raw
DNA sequences

Sequencing
Reads

Coverage = 3x

Assembled
Genome

Read collections can be much more massive than assembled genomes

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 2 / 15

Motivation

Long-term goal
Producing a compact representation for reads for storage and analysis purposes

Which compression method should we use?

Lempel-Ziv (LZ) and Grammars achieve good compression ratios

Performing any analysis on the reads requires decompression
Lempel-Ziv compresses better, but grammars allow random decompression

The compression ratio of the BWT is not as good as that of LZ or
Grammars. However, it is good for indexing

What do we propose in this work?
A grammar compressor from which we can efficiently compute the eBWT of the
reads

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 3 / 15

Motivation

Long-term goal
Producing a compact representation for reads for storage and analysis purposes

Which compression method should we use?

Lempel-Ziv (LZ) and Grammars achieve good compression ratios

Performing any analysis on the reads requires decompression
Lempel-Ziv compresses better, but grammars allow random decompression

The compression ratio of the BWT is not as good as that of LZ or
Grammars. However, it is good for indexing

What do we propose in this work?
A grammar compressor from which we can efficiently compute the eBWT of the
reads

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 3 / 15

Motivation

Long-term goal
Producing a compact representation for reads for storage and analysis purposes

Which compression method should we use?

Lempel-Ziv (LZ) and Grammars achieve good compression ratios

Performing any analysis on the reads requires decompression
Lempel-Ziv compresses better, but grammars allow random decompression

The compression ratio of the BWT is not as good as that of LZ or
Grammars. However, it is good for indexing

What do we propose in this work?
A grammar compressor from which we can efficiently compute the eBWT of the
reads

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 3 / 15

Motivation

Long-term goal
Producing a compact representation for reads for storage and analysis purposes

Which compression method should we use?

Lempel-Ziv (LZ) and Grammars achieve good compression ratios
Performing any analysis on the reads requires decompression

Lempel-Ziv compresses better, but grammars allow random decompression
The compression ratio of the BWT is not as good as that of LZ or
Grammars. However, it is good for indexing

What do we propose in this work?
A grammar compressor from which we can efficiently compute the eBWT of the
reads

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 3 / 15

Motivation

Long-term goal
Producing a compact representation for reads for storage and analysis purposes

Which compression method should we use?

Lempel-Ziv (LZ) and Grammars achieve good compression ratios
Performing any analysis on the reads requires decompression
Lempel-Ziv compresses better, but grammars allow random decompression

The compression ratio of the BWT is not as good as that of LZ or
Grammars. However, it is good for indexing

What do we propose in this work?
A grammar compressor from which we can efficiently compute the eBWT of the
reads

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 3 / 15

Motivation

Long-term goal
Producing a compact representation for reads for storage and analysis purposes

Which compression method should we use?

Lempel-Ziv (LZ) and Grammars achieve good compression ratios
Performing any analysis on the reads requires decompression
Lempel-Ziv compresses better, but grammars allow random decompression

The compression ratio of the BWT is not as good as that of LZ or
Grammars. However, it is good for indexing

What do we propose in this work?
A grammar compressor from which we can efficiently compute the eBWT of the
reads

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 3 / 15

Motivation

Long-term goal
Producing a compact representation for reads for storage and analysis purposes

Which compression method should we use?

Lempel-Ziv (LZ) and Grammars achieve good compression ratios
Performing any analysis on the reads requires decompression
Lempel-Ziv compresses better, but grammars allow random decompression

The compression ratio of the BWT is not as good as that of LZ or
Grammars. However, it is good for indexing

What do we propose in this work?
A grammar compressor from which we can efficiently compute the eBWT of the
reads

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 3 / 15

Related concepts

Induced suffix sorting (ISS) (Nong et al. 2009) is a technique for building the
SA of a text T [1..n] in linear time

Definitions: (Nong et al. 2009)
L-type (L): T [i ..n] >lex T [i + 1..n]
S-type (S): T [i ..n] <lex T [i + 1..n]
LMS-type (S*): T [i − 1..n] >lex T [i ..n] <lex T [i + 1..n]

A substirng P = T [i ..j] is a LMS-substring if the suffixes T [i ..n] and T [j..n] are
S* and no other suffix in P is S*

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 4 / 15

Related concepts

Induced suffix sorting (ISS) (Nong et al. 2009) is a technique for building the
SA of a text T [1..n] in linear time

Definitions: (Nong et al. 2009)
L-type (L): T [i ..n] >lex T [i + 1..n]
S-type (S): T [i ..n] <lex T [i + 1..n]
LMS-type (S*): T [i − 1..n] >lex T [i ..n] <lex T [i + 1..n]

A substirng P = T [i ..j] is a LMS-substring if the suffixes T [i ..n] and T [j..n] are
S* and no other suffix in P is S*

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 4 / 15

Definitions

Let T = {T1,T2, ..,Tt} be a collection of t strings with average length k

Let T = T1$T2...$Tt be the concatenation of the elements in T , separated
by a dummy symbol $

The total size of T is denoted as n

Let G = {Σ,V ,R,S} be a context-free grammar that only produces T

R is the set of rules
S is the start symbol
r = |R| is the number of rules
g is the sum of the lengths of the right hands of the rules

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 5 / 15

Definitions

Let T = {T1,T2, ..,Tt} be a collection of t strings with average length k
Let T = T1$T2...$Tt be the concatenation of the elements in T , separated
by a dummy symbol $

The total size of T is denoted as n
Let G = {Σ,V ,R,S} be a context-free grammar that only produces T

R is the set of rules
S is the start symbol
r = |R| is the number of rules
g is the sum of the lengths of the right hands of the rules

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 5 / 15

Definitions

Let T = {T1,T2, ..,Tt} be a collection of t strings with average length k
Let T = T1$T2...$Tt be the concatenation of the elements in T , separated
by a dummy symbol $

The total size of T is denoted as n

Let G = {Σ,V ,R,S} be a context-free grammar that only produces T

R is the set of rules
S is the start symbol
r = |R| is the number of rules
g is the sum of the lengths of the right hands of the rules

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 5 / 15

Definitions

Let T = {T1,T2, ..,Tt} be a collection of t strings with average length k
Let T = T1$T2...$Tt be the concatenation of the elements in T , separated
by a dummy symbol $

The total size of T is denoted as n
Let G = {Σ,V ,R,S} be a context-free grammar that only produces T

R is the set of rules
S is the start symbol
r = |R| is the number of rules
g is the sum of the lengths of the right hands of the rules

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 5 / 15

Definitions

Let T = {T1,T2, ..,Tt} be a collection of t strings with average length k
Let T = T1$T2...$Tt be the concatenation of the elements in T , separated
by a dummy symbol $

The total size of T is denoted as n
Let G = {Σ,V ,R,S} be a context-free grammar that only produces T

R is the set of rules

S is the start symbol
r = |R| is the number of rules
g is the sum of the lengths of the right hands of the rules

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 5 / 15

Definitions

Let T = {T1,T2, ..,Tt} be a collection of t strings with average length k
Let T = T1$T2...$Tt be the concatenation of the elements in T , separated
by a dummy symbol $

The total size of T is denoted as n
Let G = {Σ,V ,R,S} be a context-free grammar that only produces T

R is the set of rules
S is the start symbol

r = |R| is the number of rules
g is the sum of the lengths of the right hands of the rules

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 5 / 15

Definitions

Let T = {T1,T2, ..,Tt} be a collection of t strings with average length k
Let T = T1$T2...$Tt be the concatenation of the elements in T , separated
by a dummy symbol $

The total size of T is denoted as n
Let G = {Σ,V ,R,S} be a context-free grammar that only produces T

R is the set of rules
S is the start symbol
r = |R| is the number of rules

g is the sum of the lengths of the right hands of the rules

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 5 / 15

Definitions

Let T = {T1,T2, ..,Tt} be a collection of t strings with average length k
Let T = T1$T2...$Tt be the concatenation of the elements in T , separated
by a dummy symbol $

The total size of T is denoted as n
Let G = {Σ,V ,R,S} be a context-free grammar that only produces T

R is the set of rules
S is the start symbol
r = |R| is the number of rules
g is the sum of the lengths of the right hands of the rules

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 5 / 15

LMSg algorithm

T 1 = g t a t t a c c $ c t a a t a g t a c c $ g a c c a g a c c a g t $

S L S* L L S* L L S* S L S* S L S* S L S* L L S* L S* S L S* L S* L L S* S L S*

7 8 2 4 1 7 2 5 3 5 3 6

1 → ata 2 → cc$ 3 → cca 4 → cta 5 → ga 6 → gt$ 7 → gta 8 → tta

S L S* L S* L S* L S* L S* S

11 → 5 3 13 → 7 2 14 → 7 8 2

9 → ata 10 → cta 12 → gt$

14 10 9 13 11 11 12
S L S* S S S S

19 16 15 18 17

15 → ata 16 → cta

17 → 11 11 12

S → 19 16 15 18 17

R

T 2 =

T 3 =

T 4 =

BWT (T 3)

10 9
13 10
12 11
11 11
11 12
9 13
14 14

BWT (T 3)

4 ← 10 9
7 2 ← 13 10

6 ← 12 11
5 3 ← 11 11
5 3 ← 11 12

1 ← 9 13
7 8 2 ← 14 14

Time complexity
The grammar construction takes O(n log k) timeWe call the replacement of a nonterminal BWT (T i)[j] its partial decompression

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 6 / 15

LMSg algorithm

T 1 = g t a t t a c c $ c t a a t a g t a c c $ g a c c a g a c c a g t $
S L S* L L S* L L S* S L S* S L S* S L S* L L S* L S* S L S* L S* L L S* S L S*

7 8 2 4 1 7 2 5 3 5 3 6

1 → ata 2 → cc$ 3 → cca 4 → cta 5 → ga 6 → gt$ 7 → gta 8 → tta

S L S* L S* L S* L S* L S* S

11 → 5 3 13 → 7 2 14 → 7 8 2

9 → ata 10 → cta 12 → gt$

14 10 9 13 11 11 12
S L S* S S S S

19 16 15 18 17

15 → ata 16 → cta

17 → 11 11 12

S → 19 16 15 18 17

R

T 2 =

T 3 =

T 4 =

BWT (T 3)

10 9
13 10
12 11
11 11
11 12
9 13
14 14

BWT (T 3)

4 ← 10 9
7 2 ← 13 10

6 ← 12 11
5 3 ← 11 11
5 3 ← 11 12

1 ← 9 13
7 8 2 ← 14 14

Time complexity
The grammar construction takes O(n log k) timeWe call the replacement of a nonterminal BWT (T i)[j] its partial decompression

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 6 / 15

LMSg algorithm

T 1 = g t a t t a c c $ c t a a t a g t a c c $ g a c c a g a c c a g t $
S L S* L L S* L L S* S L S* S L S* S L S* L L S* L S* S L S* L S* L L S* S L S*

7 8 2 4 1 7 2 5 3 5 3 6

1 → ata 2 → cc$ 3 → cca 4 → cta 5 → ga 6 → gt$ 7 → gta 8 → tta

S L S* L S* L S* L S* L S* S

11 → 5 3 13 → 7 2 14 → 7 8 2

9 → ata 10 → cta 12 → gt$

14 10 9 13 11 11 12
S L S* S S S S

19 16 15 18 17

15 → ata 16 → cta

17 → 11 11 12

S → 19 16 15 18 17

R

T 2 =

T 3 =

T 4 =

BWT (T 3)

10 9
13 10
12 11
11 11
11 12
9 13
14 14

BWT (T 3)

4 ← 10 9
7 2 ← 13 10

6 ← 12 11
5 3 ← 11 11
5 3 ← 11 12

1 ← 9 13
7 8 2 ← 14 14

Time complexity
The grammar construction takes O(n log k) timeWe call the replacement of a nonterminal BWT (T i)[j] its partial decompression

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 6 / 15

LMSg algorithm

T 1 = g t a t t a c c $ c t a a t a g t a c c $ g a c c a g a c c a g t $
S L S* L L S* L L S* S L S* S L S* S L S* L L S* L S* S L S* L S* L L S* S L S*

7 8 2 4 1 7 2 5 3 5 3 6

1 → ata 2 → cc$ 3 → cca 4 → cta 5 → ga 6 → gt$ 7 → gta 8 → tta

S L S* L S* L S* L S* L S* S

11 → 5 3 13 → 7 2 14 → 7 8 2

9 → ata 10 → cta 12 → gt$

14 10 9 13 11 11 12
S L S* S S S S

19 16 15 18 17

15 → ata 16 → cta

17 → 11 11 12

S → 19 16 15 18 17

R

T 2 =

T 3 =

T 4 =

BWT (T 3)

10 9
13 10
12 11
11 11
11 12
9 13
14 14

BWT (T 3)

4 ← 10 9
7 2 ← 13 10

6 ← 12 11
5 3 ← 11 11
5 3 ← 11 12

1 ← 9 13
7 8 2 ← 14 14

Time complexity
The grammar construction takes O(n log k) timeWe call the replacement of a nonterminal BWT (T i)[j] its partial decompression

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 6 / 15

LMSg algorithm

T 1 = g t a t t a c c $ c t a a t a g t a c c $ g a c c a g a c c a g t $
S L S* L L S* L L S* S L S* S L S* S L S* L L S* L S* S L S* L S* L L S* S L S*

7 8 2 4 1 7 2 5 3 5 3 6

1 → ata 2 → cc$ 3 → cca 4 → cta 5 → ga 6 → gt$ 7 → gta 8 → tta

S L S* L S* L S* L S* L S* S

11 → 5 3 13 → 7 2 14 → 7 8 2

9 → ata 10 → cta 12 → gt$

14 10 9 13 11 11 12
S L S* S S S S

19 16 15 18 17

15 → ata 16 → cta

17 → 11 11 12

S → 19 16 15 18 17

R

T 2 =

T 3 =

T 4 =

BWT (T 3)

10 9
13 10
12 11
11 11
11 12
9 13
14 14

BWT (T 3)

4 ← 10 9
7 2 ← 13 10

6 ← 12 11
5 3 ← 11 11
5 3 ← 11 12

1 ← 9 13
7 8 2 ← 14 14

Time complexity
The grammar construction takes O(n log k) timeWe call the replacement of a nonterminal BWT (T i)[j] its partial decompression

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 6 / 15

LMSg algorithm

T 1 = g t a t t a c c $ c t a a t a g t a c c $ g a c c a g a c c a g t $
S L S* L L S* L L S* S L S* S L S* S L S* L L S* L S* S L S* L S* L L S* S L S*

7 8 2 4 1 7 2 5 3 5 3 6

1 → ata

2 → cc$ 3 → cca

4 → cta

5 → ga

6 → gt$

7 → gta 8 → tta

S L S* L S* L S* L S* L S* S

11 → 5 3 13 → 7 2 14 → 7 8 2

9 → ata 10 → cta 12 → gt$

14 10 9 13 11 11 12

S L S* S S S S

19 16 15 18 17

15 → ata 16 → cta

17 → 11 11 12

S → 19 16 15 18 17

R

T 2 =

T 3 =

T 4 =

BWT (T 3)

10 9
13 10
12 11
11 11
11 12
9 13
14 14

BWT (T 3)

4 ← 10 9
7 2 ← 13 10

6 ← 12 11
5 3 ← 11 11
5 3 ← 11 12

1 ← 9 13
7 8 2 ← 14 14

Time complexity
The grammar construction takes O(n log k) timeWe call the replacement of a nonterminal BWT (T i)[j] its partial decompression

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 6 / 15

LMSg algorithm

T 1 = g t a t t a c c $ c t a a t a g t a c c $ g a c c a g a c c a g t $
S L S* L L S* L L S* S L S* S L S* S L S* L L S* L S* S L S* L S* L L S* S L S*

7 8 2 4 1 7 2 5 3 5 3 6

1 → ata

2 → cc$ 3 → cca

4 → cta

5 → ga

6 → gt$

7 → gta 8 → tta

S L S* L S* L S* L S* L S* S

11 → 5 3 13 → 7 2 14 → 7 8 2

9 → ata 10 → cta 12 → gt$

14 10 9 13 11 11 12
S L S* S S S S

19 16 15 18 17

15 → ata 16 → cta

17 → 11 11 12

S → 19 16 15 18 17

R

T 2 =

T 3 =

T 4 =

BWT (T 3)

10 9
13 10
12 11
11 11
11 12
9 13
14 14

BWT (T 3)

4 ← 10 9
7 2 ← 13 10

6 ← 12 11
5 3 ← 11 11
5 3 ← 11 12

1 ← 9 13
7 8 2 ← 14 14

Time complexity
The grammar construction takes O(n log k) timeWe call the replacement of a nonterminal BWT (T i)[j] its partial decompression

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 6 / 15

LMSg algorithm

T 1 = g t a t t a c c $ c t a a t a g t a c c $ g a c c a g a c c a g t $
S L S* L L S* L L S* S L S* S L S* S L S* L L S* L S* S L S* L S* L L S* S L S*

7 8 2 4 1 7 2 5 3 5 3 6

1 → ata

2 → cc$ 3 → cca

4 → cta

5 → ga

6 → gt$

7 → gta 8 → tta

S L S* L S* L S* L S* L S* S

11 → 5 3 13 → 7 2 14 → 7 8 2

9 → ata 10 → cta

12 → gt$

14 10 9 13 11 11 12
S L S* S S S S

19 16 15 18 17

15 → ata 16 → cta

17 → 11 11 12

S → 19 16 15 18 17

R

T 2 =

T 3 =

T 4 =

BWT (T 3)

10 9
13 10
12 11
11 11
11 12
9 13
14 14

BWT (T 3)

4 ← 10 9
7 2 ← 13 10

6 ← 12 11
5 3 ← 11 11
5 3 ← 11 12

1 ← 9 13
7 8 2 ← 14 14

Time complexity
The grammar construction takes O(n log k) timeWe call the replacement of a nonterminal BWT (T i)[j] its partial decompression

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 6 / 15

LMSg algorithm

T 1 = g t a t t a c c $ c t a a t a g t a c c $ g a c c a g a c c a g t $
S L S* L L S* L L S* S L S* S L S* S L S* L L S* L S* S L S* L S* L L S* S L S*

7 8 2 4 1 7 2 5 3 5 3 6

1 → ata

2 → cc$ 3 → cca

4 → cta

5 → ga

6 → gt$

7 → gta 8 → tta

S L S* L S* L S* L S* L S* S

11 → 5 3 13 → 7 2 14 → 7 8 2

9 → ata 10 → cta

12 → gt$

14 10 9 13 11 11 12
S L S* S S S S

19 16 15 18 17

15 → ata 16 → cta

17 → 11 11 12

S → 19 16 15 18 17

R

T 2 =

T 3 =

T 4 =

BWT (T 3)

10 9
13 10
12 11
11 11
11 12
9 13
14 14

BWT (T 3)

4 ← 10 9
7 2 ← 13 10

6 ← 12 11
5 3 ← 11 11
5 3 ← 11 12

1 ← 9 13
7 8 2 ← 14 14

Time complexity
The grammar construction takes O(n log k) timeWe call the replacement of a nonterminal BWT (T i)[j] its partial decompression

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 6 / 15

LMSg algorithm

T 1 = g t a t t a c c $ c t a a t a g t a c c $ g a c c a g a c c a g t $
S L S* L L S* L L S* S L S* S L S* S L S* L L S* L S* S L S* L S* L L S* S L S*

7 8 2 4 1 7 2 5 3 5 3 6

1 → ata

2 → cc$ 3 → cca

4 → cta

5 → ga

6 → gt$

7 → gta 8 → tta

S L S* L S* L S* L S* L S* S

11 → 5 3 13 → 7 2 14 → 7 8 2

9 → ata 10 → cta

12 → gt$

14 10 9 13 11 11 12
S L S* S S S S

19 16 15 18 17

15 → ata 16 → cta

17 → 11 11 12

S → 19 16 15 18 17

R

T 2 =

T 3 =

T 4 =

BWT (T 3)

10 9
13 10
12 11
11 11
11 12
9 13
14 14

BWT (T 3)

4 ← 10 9
7 2 ← 13 10

6 ← 12 11
5 3 ← 11 11
5 3 ← 11 12

1 ← 9 13
7 8 2 ← 14 14

Time complexity
The grammar construction takes O(n log k) time

We call the replacement of a nonterminal BWT (T i)[j] its partial decompression

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 6 / 15

LMSg algorithm

T 1 = g t a t t a c c $ c t a a t a g t a c c $ g a c c a g a c c a g t $
S L S* L L S* L L S* S L S* S L S* S L S* L L S* L S* S L S* L S* L L S* S L S*

7 8 2 4 1 7 2 5 3 5 3 6

1 → ata 2 → cc$ 3 → cca 4 → cta 5 → ga 6 → gt$ 7 → gta 8 → tta

S L S* L S* L S* L S* L S* S

11 → 5 3 13 → 7 2 14 → 7 8 2

9 → ata 10 → cta 12 → gt$

14 10 9 13 11 11 12
S L S* S S S S

19 16 15 18 17

15 → ata 16 → cta

17 → 11 11 12

S → 19 16 15 18 17

R

T 2 =

T 3 =

T 4 =

BWT (T 3)

10 9
13 10
12 11
11 11
11 12
9 13
14 14

BWT (T 3)

4 ← 10 9
7 2 ← 13 10

6 ← 12 11
5 3 ← 11 11
5 3 ← 11 12

1 ← 9 13
7 8 2 ← 14 14

Time complexity
The grammar construction takes O(n log k) timeWe call the replacement of a nonterminal BWT (T i)[j] its partial decompression

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 6 / 15

LMSg algorithm

T 1 = g t a t t a c c $ c t a a t a g t a c c $ g a c c a g a c c a g t $
S L S* L L S* L L S* S L S* S L S* S L S* L L S* L S* S L S* L S* L L S* S L S*

7 8 2 4 1 7 2 5 3 5 3 6

1 → ata 2 → cc$ 3 → cca 4 → cta 5 → ga 6 → gt$ 7 → gta 8 → tta

S L S* L S* L S* L S* L S* S

11 → 5 3 13 → 7 2 14 → 7 8 2

9 → ata 10 → cta 12 → gt$

14 10 9 13 11 11 12
S L S* S S S S

19 16 15 18 17

15 → ata 16 → cta

17 → 11 11 12

S → 19 16 15 18 17

R

T 2 =

T 3 =

T 4 =

BWT (T 3)

10 9
13 10
12 11
11 11
11 12
9 13
14 14

BWT (T 3)

4 ← 10 9
7 2 ← 13 10

6 ← 12 11
5 3 ← 11 11
5 3 ← 11 12

1 ← 9 13
7 8 2 ← 14 14

Time complexity
The grammar construction takes O(n log k) time

We call the replacement of a nonterminal BWT (T i)[j] its partial decompression

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 6 / 15

Sketch for inferring the eBWT

12

3

1

3

3

1

8

2

2

2

3

2

2

5

1

3

2

3

8

0

4

A range of partially decompressed phrases in some BWT (T i)

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 7 / 15

Sketch for inferring the eBWT

12

3

1

3

3

1

8

2

2

2

3

2

2

5

1

3

2

3

8

0

4

A range of partially decompressed phrases in some BWT (T i)

Strings 3 2 and 3 2 0 are two distinct suffixes in partially decompressed phrases

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 7 / 15

Sketch for inferring the eBWT

S

S

LL

L

35

24

2

1

2

3

3

0

3 2

2

12

3

1

3

3

1

8

2

2

2

3

2

2

5

1

3

2

3

8

0

4

In one scan of BWT (T i), we obtain the left contexts of a specific phrase’s suffix

During the construction of G, we encapsulate the repeated suffixes in new rules

Observation
Building BWT (T i−1) reduces mostly to sort the distinct suffixes in the partial
decompressions

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 8 / 15

Sketch for inferring the eBWT

S

S

LL

L

35

24

2

1

2

3

3

0

3 2

2

12

3

1

3

3

1

8

2

2

2

3

2

2

5

1

3

2

3

8

0

4

In one scan of BWT (T i), we obtain the left contexts of a specific phrase’s suffix

During the construction of G, we encapsulate the repeated suffixes in new rules

Observation
Building BWT (T i−1) reduces mostly to sort the distinct suffixes in the partial
decompressions

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 8 / 15

Sketch for inferring the eBWT

S

S

LL

L

35

24

2

1

2

3

3

0

3 2

2

12

3

1

3

3

1

8

2

2

2

3

2

2

5

1

3

2

3

8

0

4

In one scan of BWT (T i), we obtain the left contexts of a specific phrase’s suffix

During the construction of G, we encapsulate the repeated suffixes in new rules

Observation
Building BWT (T i−1) reduces mostly to sort the distinct suffixes in the partial
decompressions

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 8 / 15

Sketch for inferring the eBWT

S

S

LL

L

35

24

2

1

2

3

3

0

3 2

2

12

3

1

3

3

1

8

2

2

2

3

2

2

5

1

3

2

3

8

0

4

In one scan of BWT (T i), we obtain the left contexts of a specific phrase’s suffix

During the construction of G, we encapsulate the repeated suffixes in new rules

Observation
Building BWT (T i−1) reduces mostly to sort the distinct suffixes in the partial
decompressions

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 8 / 15

Sketch for inferring the eBWT

L

L

S

S

L

S

S

S

L

S

L

S

S

L

S

S

S

L

L

S

L

12

3

1

3

3

1

8

2

2

2

3

2

2

5

1

3

2

3

8

0

4

We do not have enough information for sorting suffixes of length 1

We use BWT (T i) to obtain the right context of suffix 1 in row 3

Observation
Building BWT (T i−1) reduces mostly to sort the distinct suffixes in the partial
decompressions

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 9 / 15

Representing the grammar

We adapt the grammar tree data structure proposed by Claude et al. 2012

Procedure:
We traverse the parse tree of G in level-order
Terminals are stored as leaves
The first occurrence of a nonterminal is stored as an internal node

The next occurrences are stored as leaves
The leaf’s label is the first occurrence of the nonterminal

We encode the topology in LOUDS
The leaf labels are stored in a succinct array

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 10 / 15

Representing the grammar

We adapt the grammar tree data structure proposed by Claude et al. 2012
Procedure:

We traverse the parse tree of G in level-order
Terminals are stored as leaves
The first occurrence of a nonterminal is stored as an internal node

The next occurrences are stored as leaves
The leaf’s label is the first occurrence of the nonterminal

We encode the topology in LOUDS
The leaf labels are stored in a succinct array

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 10 / 15

Representing the grammar

We adapt the grammar tree data structure proposed by Claude et al. 2012
Procedure:

We traverse the parse tree of G in level-order

Terminals are stored as leaves
The first occurrence of a nonterminal is stored as an internal node

The next occurrences are stored as leaves
The leaf’s label is the first occurrence of the nonterminal

We encode the topology in LOUDS
The leaf labels are stored in a succinct array

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 10 / 15

Representing the grammar

We adapt the grammar tree data structure proposed by Claude et al. 2012
Procedure:

We traverse the parse tree of G in level-order
Terminals are stored as leaves

The first occurrence of a nonterminal is stored as an internal node

The next occurrences are stored as leaves
The leaf’s label is the first occurrence of the nonterminal

We encode the topology in LOUDS
The leaf labels are stored in a succinct array

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 10 / 15

Representing the grammar

We adapt the grammar tree data structure proposed by Claude et al. 2012
Procedure:

We traverse the parse tree of G in level-order
Terminals are stored as leaves
The first occurrence of a nonterminal is stored as an internal node

The next occurrences are stored as leaves
The leaf’s label is the first occurrence of the nonterminal

We encode the topology in LOUDS
The leaf labels are stored in a succinct array

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 10 / 15

Representing the grammar

We adapt the grammar tree data structure proposed by Claude et al. 2012
Procedure:

We traverse the parse tree of G in level-order
Terminals are stored as leaves
The first occurrence of a nonterminal is stored as an internal node

The next occurrences are stored as leaves

The leaf’s label is the first occurrence of the nonterminal
We encode the topology in LOUDS
The leaf labels are stored in a succinct array

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 10 / 15

Representing the grammar

We adapt the grammar tree data structure proposed by Claude et al. 2012
Procedure:

We traverse the parse tree of G in level-order
Terminals are stored as leaves
The first occurrence of a nonterminal is stored as an internal node

The next occurrences are stored as leaves
The leaf’s label is the first occurrence of the nonterminal

We encode the topology in LOUDS
The leaf labels are stored in a succinct array

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 10 / 15

Representing the grammar

We adapt the grammar tree data structure proposed by Claude et al. 2012
Procedure:

We traverse the parse tree of G in level-order
Terminals are stored as leaves
The first occurrence of a nonterminal is stored as an internal node

The next occurrences are stored as leaves
The leaf’s label is the first occurrence of the nonterminal

We encode the topology in LOUDS

The leaf labels are stored in a succinct array

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 10 / 15

Representing the grammar

We adapt the grammar tree data structure proposed by Claude et al. 2012
Procedure:

We traverse the parse tree of G in level-order
Terminals are stored as leaves
The first occurrence of a nonterminal is stored as an internal node

The next occurrences are stored as leaves
The leaf’s label is the first occurrence of the nonterminal

We encode the topology in LOUDS
The leaf labels are stored in a succinct array

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 10 / 15

Representing the grammar

S

19

7

g t a

8

t t a

2

c c $

16

c t a

15

a t a

18

7 2

17

11

5

g a

3

c c a

11 12

g t $

1

2

7 8

3 6

10

18

7 109

4 5

11

14

9

c t a a t a 7 9 10 g t a t t a c c $ g t $ g a c c a

Space usage
The grammar tree uses 2g + (g − r) log(r) bits of space

We have to reconstruct the original nonterminal symbols to get eBWT

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 11 / 15

Representing the grammar

S

19

7

g t a

8

t t a

2

c c $

16

c t a

15

a t a

18

7 2

17

11

5

g a

3

c c a

11 12

g t $

1

2

7 8

3 6

10

18

7 109

4 5

11

14

9

c t a a t a 7 9 10 g t a t t a c c $ g t $ g a c c a

Space usage
The grammar tree uses 2g + (g − r) log(r) bits of space

We have to reconstruct the original nonterminal symbols to get eBWT

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 11 / 15

Representing the grammar

S

19

7

g t a

8

t t a

2

c c $

16

c t a

15

a t a

18

7 2

17

11

5

g a

3

c c a

11 12

g t $

1

2

7 8

3 6

10

18

7 109

4 5

11

14

9

c t a a t a 7 9 10 g t a t t a c c $ g t $ g a c c a

Space usage
The grammar tree uses 2g + (g − r) log(r) bits of space

We have to reconstruct the original nonterminal symbols to get eBWT

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 11 / 15

Representing the grammar

S

19

7

g t a

8

t t a

2

c c $

16

c t a

15

a t a

18

7 2

17

11

5

g a

3

c c a

11 12

g t $

1

2

7 8

3 6

10

18

7 109

4 5

11

14

9

c t a a t a 7 9 10 g t a t t a c c $ g t $ g a c c a

Space usage
The grammar tree uses 2g + (g − r) log(r) bits of space

We have to reconstruct the original nonterminal symbols to get eBWT

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 11 / 15

Experiments

We compressed read collections from five human samples of the Human Genome
Diversity Project

Number of Uncompressed
genomes size (GB)

1 12.77
2 23.43
3 34.30
4 45.89
5 57.37

We evaluated the following methods:
LMSg (LPG)
RePair + Prefix-Free Parsing (BR)
p7zip (highest compression mode) (7Z)
FM-index (without SA) (FM)
RLFM-index (without SA) (RLFM)

We use 10 threads with all the methods (when possible)

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 12 / 15

Experiments

We compressed read collections from five human samples of the Human Genome
Diversity Project

Number of Uncompressed
genomes size (GB)

1 12.77
2 23.43
3 34.30
4 45.89
5 57.37

We evaluated the following methods:
LMSg (LPG)
RePair + Prefix-Free Parsing (BR)
p7zip (highest compression mode) (7Z)
FM-index (without SA) (FM)
RLFM-index (without SA) (RLFM)

We use 10 threads with all the methods (when possible)

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 12 / 15

Experiments

We compressed read collections from five human samples of the Human Genome
Diversity Project

Number of Uncompressed
genomes size (GB)

1 12.77
2 23.43
3 34.30
4 45.89
5 57.37

We evaluated the following methods:

LMSg (LPG)
RePair + Prefix-Free Parsing (BR)
p7zip (highest compression mode) (7Z)
FM-index (without SA) (FM)
RLFM-index (without SA) (RLFM)

We use 10 threads with all the methods (when possible)

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 12 / 15

Experiments

We compressed read collections from five human samples of the Human Genome
Diversity Project

Number of Uncompressed
genomes size (GB)

1 12.77
2 23.43
3 34.30
4 45.89
5 57.37

We evaluated the following methods:
LMSg (LPG)

RePair + Prefix-Free Parsing (BR)
p7zip (highest compression mode) (7Z)
FM-index (without SA) (FM)
RLFM-index (without SA) (RLFM)

We use 10 threads with all the methods (when possible)

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 12 / 15

Experiments

We compressed read collections from five human samples of the Human Genome
Diversity Project

Number of Uncompressed
genomes size (GB)

1 12.77
2 23.43
3 34.30
4 45.89
5 57.37

We evaluated the following methods:
LMSg (LPG)
RePair + Prefix-Free Parsing (BR)

p7zip (highest compression mode) (7Z)
FM-index (without SA) (FM)
RLFM-index (without SA) (RLFM)

We use 10 threads with all the methods (when possible)

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 12 / 15

Experiments

We compressed read collections from five human samples of the Human Genome
Diversity Project

Number of Uncompressed
genomes size (GB)

1 12.77
2 23.43
3 34.30
4 45.89
5 57.37

We evaluated the following methods:
LMSg (LPG)
RePair + Prefix-Free Parsing (BR)
p7zip (highest compression mode) (7Z)

FM-index (without SA) (FM)
RLFM-index (without SA) (RLFM)

We use 10 threads with all the methods (when possible)

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 12 / 15

Experiments

We compressed read collections from five human samples of the Human Genome
Diversity Project

Number of Uncompressed
genomes size (GB)

1 12.77
2 23.43
3 34.30
4 45.89
5 57.37

We evaluated the following methods:
LMSg (LPG)
RePair + Prefix-Free Parsing (BR)
p7zip (highest compression mode) (7Z)
FM-index (without SA) (FM)

RLFM-index (without SA) (RLFM)
We use 10 threads with all the methods (when possible)

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 12 / 15

Experiments

We compressed read collections from five human samples of the Human Genome
Diversity Project

Number of Uncompressed
genomes size (GB)

1 12.77
2 23.43
3 34.30
4 45.89
5 57.37

We evaluated the following methods:
LMSg (LPG)
RePair + Prefix-Free Parsing (BR)
p7zip (highest compression mode) (7Z)
FM-index (without SA) (FM)
RLFM-index (without SA) (RLFM)

We use 10 threads with all the methods (when possible)

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 12 / 15

Experiments

We compressed read collections from five human samples of the Human Genome
Diversity Project

Number of Uncompressed
genomes size (GB)

1 12.77
2 23.43
3 34.30
4 45.89
5 57.37

We evaluated the following methods:
LMSg (LPG)
RePair + Prefix-Free Parsing (BR)
p7zip (highest compression mode) (7Z)
FM-index (without SA) (FM)
RLFM-index (without SA) (RLFM)

We use 10 threads with all the methods (when possible)

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 12 / 15

Results
C

om
pr

es
si

on
 ra

tio

M
em

or
y

pe
ak

 (G
B

)

E
la

ps
ed

 ti
m

e
(h

ou
rs

)

A) B) C)

0

100

200

300

1 2 3 4 5

M
em

or
y

Pe
ak

 (G
B) Method

LPG
BR
7Z
FM
RLFM

0

20

40

60

1 2 3 4 5

El
ap

se
d

tim
e

(h
ou

rs
) Method

LPG
BR
7Z
FM
RLFM

Input dataset

2

3

4

5

6

1 2 3 4 5

C
om

pr
es

si
on

 ra
tio Method

LPG
BR
7Z
FM
RLFM

The compression ratio was measured as the size of the plain representation divided
by the compressed representation

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 13 / 15

Further work

Simplify the grammar and apply RePair on top of it

Remove dollar symbols
A better implementation of the parallel decompression
Create a Self-Index from the grammar
Build other data structures: LCP, de Bruijn graphs ...

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 14 / 15

Further work

Simplify the grammar and apply RePair on top of it
Remove dollar symbols

A better implementation of the parallel decompression
Create a Self-Index from the grammar
Build other data structures: LCP, de Bruijn graphs ...

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 14 / 15

Further work

Simplify the grammar and apply RePair on top of it
Remove dollar symbols
A better implementation of the parallel decompression

Create a Self-Index from the grammar
Build other data structures: LCP, de Bruijn graphs ...

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 14 / 15

Further work

Simplify the grammar and apply RePair on top of it
Remove dollar symbols
A better implementation of the parallel decompression
Create a Self-Index from the grammar

Build other data structures: LCP, de Bruijn graphs ...

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 14 / 15

Further work

Simplify the grammar and apply RePair on top of it
Remove dollar symbols
A better implementation of the parallel decompression
Create a Self-Index from the grammar
Build other data structures: LCP, de Bruijn graphs ...

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 14 / 15

Questions?

	Motivation
	Preliminaries
	Our approach
	LMS grammar
	Encoding the grammar

	Experiments

