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Motivation

In Genomics, sequencing reads are massive and repetitive string collections of raw
DNA sequences

Read collections can be much more massive than assembled genomes
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Motivation

Long-term goal
Producing a compact representation for reads for storage and analysis purposes

Which compression method should we use?

Lempel-Ziv (LZ) and Grammars achieve good compression ratios

Performing any analysis on the reads requires decompression
Lempel-Ziv compresses better, but grammars allow random decompression

The compression ratio of the BWT is not as good as that of LZ or
Grammars. However, it is good for indexing

What do we propose in this work?
A grammar compressor from which we can efficiently compute the eBWT of the
reads
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Related concepts

Induced suffix sorting (ISS) (Nong et al. 2009) is a technique for building the
SA of a text T [1..n] in linear time

Definitions: (Nong et al. 2009)
L-type (L): T [i ..n] >lex T [i + 1..n]
S-type (S): T [i ..n] <lex T [i + 1..n]
LMS-type (S*): T [i − 1..n] >lex T [i ..n] <lex T [i + 1..n]

A substirng P = T [i ..j] is a LMS-substring if the suffixes T [i ..n] and T [j..n] are
S* and no other suffix in P is S*
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Definitions

Let T = {T1,T2, ..,Tt} be a collection of t strings with average length k

Let T = T1$T2...$Tt be the concatenation of the elements in T , separated
by a dummy symbol $

The total size of T is denoted as n

Let G = {Σ,V ,R,S} be a context-free grammar that only produces T

R is the set of rules
S is the start symbol
r = |R| is the number of rules
g is the sum of the lengths of the right hands of the rules
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LMSg algorithm

T 1 = g t a t t a c c $ c t a a t a g t a c c $ g a c c a g a c c a g t $

S L S* L L S* L L S* S L S* S L S* S L S* L L S* L S* S L S* L S* L L S* S L S*

7 8 2 4 1 7 2 5 3 5 3 6

1 → ata 2 → cc$ 3 → cca 4 → cta 5 → ga 6 → gt$ 7 → gta 8 → tta

S L S* L S* L S* L S* L S* S

11 → 5 3 13 → 7 2 14 → 7 8 2

9 → ata 10 → cta 12 → gt$

14 10 9 13 11 11 12
S L S* S S S S

19 16 15 18 17

15 → ata 16 → cta

17 → 11 11 12

S → 19 16 15 18 17

R

T 2 =

T 3 =

T 4 =

BWT (T 3)

10 9
13 10
12 11
11 11
11 12
9 13
14 14

BWT (T 3)

4 ← 10 9
7 2 ← 13 10

6 ← 12 11
5 3 ← 11 11
5 3 ← 11 12

1 ← 9 13
7 8 2 ← 14 14

Time complexity
The grammar construction takes O(n log k) timeWe call the replacement of a nonterminal BWT (T i)[j] its partial decompression
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11 → 5 3 13 → 7 2 14 → 7 8 2

9 → ata 10 → cta 12 → gt$

14 10 9 13 11 11 12
S L S* S S S S

19 16 15 18 17

15 → ata 16 → cta

17 → 11 11 12

S → 19 16 15 18 17

R

T 2 =

T 3 =

T 4 =

BWT (T 3)

10 9
13 10
12 11
11 11
11 12
9 13
14 14

BWT (T 3)

4 ← 10 9
7 2 ← 13 10

6 ← 12 11
5 3 ← 11 11
5 3 ← 11 12

1 ← 9 13
7 8 2 ← 14 14

Time complexity
The grammar construction takes O(n log k) time

We call the replacement of a nonterminal BWT (T i)[j] its partial decompression
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Sketch for inferring the eBWT
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A range of partially decompressed phrases in some BWT (T i)

D.Díaz, G.Navarro (U. Chile) Grammar compression DCC, March 2021 7 / 15



Sketch for inferring the eBWT

12

3

1

3

3

1

8

2

2

2

3

2

2

5

1

3

2

3

8

0

4

A range of partially decompressed phrases in some BWT (T i)
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In one scan of BWT (T i), we obtain the left contexts of a specific phrase’s suffix

During the construction of G, we encapsulate the repeated suffixes in new rules

Observation
Building BWT (T i−1) reduces mostly to sort the distinct suffixes in the partial
decompressions
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We do not have enough information for sorting suffixes of length 1

We use BWT (T i) to obtain the right context of suffix 1 in row 3

Observation
Building BWT (T i−1) reduces mostly to sort the distinct suffixes in the partial
decompressions
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Representing the grammar

We adapt the grammar tree data structure proposed by Claude et al. 2012

Procedure:
We traverse the parse tree of G in level-order
Terminals are stored as leaves
The first occurrence of a nonterminal is stored as an internal node

The next occurrences are stored as leaves
The leaf’s label is the first occurrence of the nonterminal

We encode the topology in LOUDS
The leaf labels are stored in a succinct array
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Representing the grammar
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Space usage
The grammar tree uses 2g + (g − r) log(r) bits of space

We have to reconstruct the original nonterminal symbols to get eBWT
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Experiments

We compressed read collections from five human samples of the Human Genome
Diversity Project

Number of Uncompressed
genomes size (GB)

1 12.77
2 23.43
3 34.30
4 45.89
5 57.37

We evaluated the following methods:
LMSg (LPG)
RePair + Prefix-Free Parsing (BR)
p7zip (highest compression mode) (7Z)
FM-index (without SA) (FM)
RLFM-index (without SA) (RLFM)

We use 10 threads with all the methods (when possible)
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The compression ratio was measured as the size of the plain representation divided
by the compressed representation
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Further work

Simplify the grammar and apply RePair on top of it

Remove dollar symbols
A better implementation of the parallel decompression
Create a Self-Index from the grammar
Build other data structures: LCP, de Bruijn graphs ...
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Questions?
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