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Introduction
3D Point Cloud Data

Point cloud data always takes up a lot of storage space.

For example in the MVUBL!, a point cloud with 0.3 million points per 3D frame at 30
fps, point cloud raw video needs around 200MB of storage space per second.
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Related Work

Lossy Geometry Compression

* The hand-crafted point cloud lossy geometry compression

 MPEG G-PCC standardl?!
* In case of low and medium bit rates, method are prone to
producing block effects and many points will be lost after

decoded.

* The deep learning-based point cloud lossy gemotry compression

* Autoencoder-based approach
* Quach et al. proposed methodl3! tackle the block effects
problem, but construct point cloud still has a large area of
points missing nowadays.
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Proposed Architecture

Point AE-DCGAN
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Experimental

RD Performance on the MVUB dataset

In the table, ”’+” indicates an increase —

and - indicates a decrease.
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Experimental

Visual Quality

(a) Original

(b) MPEG G-PCC (¢) Quach Method
3D point cloud data “Phil” as an example

(d) Our Method



I Conclusion

* The proposed method is first GAN-based point cloud
compression algorithm

* Our Point AE-DCGAN solves the problem of points
missing

e The multi-scale deconvolution connection structure
reconstruct the good quality point cloud at lower bit rates.

* This work can be extended to the compression of the
dynamic point cloud



