

Iterative Geometry Calibration from Distance Estimates for Wireless Acoustic Sensor Networks

Tobias Gburrek, Joerg Schmalenstroeer, Reinhold Haeb-Umbach

Department of Communications Engineering – Paderborn University

IEEE International Conference on Acoustics, Speech and Signal Processing 6-11 June 2021; Toronto, Ontario, Canada

Motivation

Wireless Acoustic Sensor Networks

- Sensor nodes
 - Positions: P_n
- Acoustic sources
 - **•** Positions: O_k
- Source-node distances: $d_{n,k}$

Geometry Calibration

Estimation of the positions of the sensor nodes

Optimization Problem

Task

- Estimate all unknown positions $\Omega = \Omega_{P} \cup \Omega_{O}$ from distance estimates [1] $\hat{d}_{n,k}$
 - Node positions: $\Omega_{\boldsymbol{P}} = \{\boldsymbol{P}_1, \dots, \boldsymbol{P}_N\}$
 - Source positions: $\Omega_{o} = \{O_1, \ldots, O_{\kappa}\}$

Cost Function

$$J(\Omega) = \sum_{k=1}^{K} \sum_{n=1}^{N} \left(\hat{d}_{n,k}^{2} - \|\boldsymbol{P}_{n} - \boldsymbol{O}_{k}\|_{2}^{2} \right)^{2}$$

^[1] T. Gburrek, J. Schmalenstroeer, A. Brendel, W. Kellermann and R. Haeb-Umbach, "Deep Neural Network based Distance Estimation for Geometry Calibration in Acoustic Sensor Networks," 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, Netherlands, 2021, pp. 196-200, doi: 10.23919/Eusipco47968.2020.9287583.

Iterative Optimization

Cost Function

$$J(\Omega) = \sum_{k=1}^{K} \sum_{n=1}^{N} \left(\hat{d}_{n,k}^{2} - \|\boldsymbol{P}_{n} - \boldsymbol{O}_{k}\|_{2}^{2} \right)^{2}$$

Alternating Optimization

1. Keep
$$\Omega_{\boldsymbol{P}}$$
 fixed and optimize $\Omega_{\boldsymbol{O}}$: $\hat{\boldsymbol{O}}_{k} = \underset{\boldsymbol{O}_{k}}{\operatorname{argmin}} \sum_{n=1}^{N} \left(\hat{d}_{n,k}^{2} - \|\boldsymbol{P}_{n} - \boldsymbol{O}_{k}\|_{2}^{2} \right)^{2}$
2. Keep $\Omega_{\boldsymbol{O}}$ fixed and optimize $\Omega_{\boldsymbol{P}}$: $\hat{\boldsymbol{P}}_{n} = \underset{\boldsymbol{P}_{n}}{\operatorname{argmin}} \sum_{k=1}^{K} \left(\hat{d}_{n,k}^{2} - \|\boldsymbol{P}_{n} - \boldsymbol{O}_{k}\|_{2}^{2} \right)^{2}$

Optimization of O_k

Reference Node

- Linearize the least squares problem [2]
- First node as reference node:
 - $\tilde{\boldsymbol{P}}_n = \boldsymbol{P}_n \boldsymbol{P}_1 \\ \tilde{\boldsymbol{O}}_k = \boldsymbol{O}_k \boldsymbol{P}_1$

System of Equations

$$\underbrace{\left(\tilde{P}_{n,x}-\tilde{O}_{k,x}\right)^{2}+\left(\tilde{P}_{n,y}-\tilde{O}_{k,y}\right)^{2}}_{\left\|\tilde{P}_{n}-\tilde{O}_{k}\right\|_{2}^{2}}=\hat{d}_{n,k}^{2}\qquad\forall n\neq1$$
$$\underbrace{\|\tilde{P}_{n}-\tilde{O}_{k}\|_{2}^{2}}_{\tilde{O}_{k,x}}+\tilde{O}_{k,y}^{2}=\hat{d}_{1,k}^{2}\qquad n=1$$

[2] M. A. Spirito, "On the accuracy of cellular mobile station location estimation," in IEEE Transactions on Vehicular Technology, vol. 50, no. 3, pp. 674-685, May 2001, doi: 10.1109/25.933304.

Iterative Geometry Calibration from Distance Estimates for Wireless Acoustic Sensor Networks

Optimization of O_k

Least Squares Problem

$$\underbrace{\begin{bmatrix} 2\tilde{P}_{2,x} & 2\tilde{P}_{2,y} \\ \vdots & \vdots \\ 2\tilde{P}_{N,x} & 2\tilde{P}_{N,y} \end{bmatrix}}_{\boldsymbol{R}} \underbrace{\begin{bmatrix} \tilde{O}_{k,x} \\ \tilde{O}_{k,y} \end{bmatrix}}_{\tilde{O}_{k}} = \underbrace{\begin{bmatrix} \hat{d}_{1,k}^{2} + \tilde{P}_{2,x}^{2} + \tilde{P}_{2,y}^{2} - \hat{d}_{2,k}^{2} \\ \vdots \\ \hat{d}_{1,k}^{2} + \tilde{P}_{N,x}^{2} + \tilde{P}_{N,y}^{2} - \hat{d}_{N,k}^{2} \end{bmatrix}}_{\boldsymbol{b}}$$

Weighted Least Squares Solution

• Heteroscedastic distance estimation error:

$$\mathcal{U}(ilde{m{O}}_k) = \left(m{R} ilde{m{O}}_k - m{b}
ight)^T m{W} \left(m{R} ilde{m{O}}_k - m{b}
ight) ext{ with } W_{n,n} = 1/ ilde{d}_{n,k}^2$$

• Exchange roles of **P** and **O** to estimate the nodes' positions

Initialization

Multidimensional Scaling (MDS)

- Needed: Matrix D of inter-node distances $D_{i,j}$ with $i, j \in [1, N]$
- Given: Source-node distances $\boldsymbol{A}_{P} = \{\hat{d}_{1,1}, \dots, \hat{d}_{N,K}\}$

Approximate MDS

$$\begin{split} & \max_{l} (|\hat{d}_{i,l} - \hat{d}_{j,l}|) \leq D_{i,j} \leq \min_{u} (\hat{d}_{i,u} + \hat{d}_{j,u}) \\ & \widehat{D}_{i,j} = [\max_{l} (|\hat{d}_{i,l} - \hat{d}_{j,l}|) + \min_{u} (\hat{d}_{i,u} + \hat{d}_{j,u})]/2 \end{split}$$

Geometry cAlibration fRom Distance Estimates (GARDE) Algorithm

Iterative Geometry Calibration from Distance Estimates for Wireless Acoustic Sensor Networks

Experiments

Simulated Data Set

- 40 setups
 - Sensor nodes placed in gray areas
 - Sources (speech from TIMIT database) observed at 500 positions
 - Reverberation time $T_{60} \in \{200 \text{ ms}, 400 \text{ ms}\}$
- Image-source method to simulate room impulse responses (RIRs)

Experiments

- Dependency of GARDE on the number of iterations and annealing (30 rounds)
 - The more iterations the smaller the geometry calibration error
 - \blacktriangleright Simulated annealing to overcome local minima \rightarrow smaller errors

Method	$T_{60}=200\mathrm{ms}$	$T_{60}=400\mathrm{ms}$
DoA-based [3] + Scaling [1]	0.043 m	0.103 m
GARDE	0.017 m	0.032 m

- Root mean squared error (RMSE) of the sensor positions
 - Direction of arrival (DoA) estimates are more affected by reverberation than distance estimates

^[3] F. Jacob, J. Schmalenstroeer and R. Haeb-Umbach, "Microphone Array Position Self-Calibration from Reverberant Speech Input," IWAENC 2012; International Workshop on Acoustic Signal Enhancement, Aachen, Germany, 2012, pp. 1-4.

^[1] T. Gburrek, J. Schmalenstroeer, A. Brendel, W. Kellermann and R. Haeb-Umbach, "Deep Neural Network based Distance Estimation for Geometry Calibration in Acoustic Sensor Networks," 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, Netherlands, 2021, pp. 196-200, doi: 10.23919/Eusipco47968.2020.9287583.

Experiments

- Cramer-Rao lower bounds (CRLBs) of estimator and RMSE of position estimates
 - Derivation of the CRLBs can be found in the paper
 - GARDE gets close to the CRLBs

Conclusions

Conclusions

- GARDE: Iterative weighted least squares based algorithm for geometry calibration
 - Input: Estimates of the source-node distances
 - Results: Positions of the sensor nodes and acoustic sources
- Derivation of the positions' CRLBs
- Simulations have shown promising precision:
 - GARDE is able to outperform our previous DoA-based approach
 - GARDE gets close to the CRLBs

Toolbox

https://github.com/fgnt/paderwasn

Questions?

gburrek@nt.uni-paderborn.de