

Compact Representation of Multi-Granular Topological Hierarchies

José Fuentes Sepúlveda, **Diego Gatica**, Gonzalo Navarro, Andrea Rodríguez, Diego Seco

March 24th, 2021

Introduction

Problem

- Nowadays, it is common to deal with the management of information associated with a specific space.
- Interesting questions to answer are of topological nature.

Region	Date	Total
Valparaiso	September	5080
Santiago	September	8054
Biobio	September	3204

Table: Number of birth per region

Province	Week	Sex	Total
Quillota	18	Male	102
Arauco	18	Female	52
Concepcion	18	Male	67

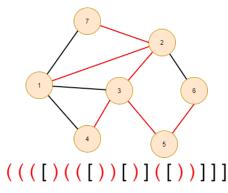
Table: Number of birth per province

Introduction

Problem with current solutions

- Solutions focused on models using spatial object geometry
- High space usage and slow query times
- Lack of research focused on topological models

Introduction

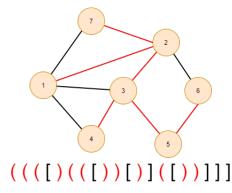

Proposed solution

- To develop a compact data structure with the objective of answering containment and adjacency queries.
- Proposed structure focused on answering topological queries over a partition of space.

Related work

Compact planar graph representation

- Turan's representation: Representation built in two steps.
- A sequence of parentheses and brackets representing the planar graph is obtained.

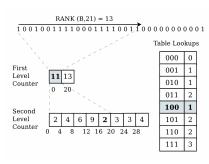


Example of compact planar graph

Related work

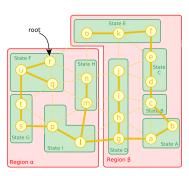
Originally, this representation has no primitives to navigate the graph.

- Ferres et. al. provides primitives for navigating the graph and answering topological queries
- Fuentes-Sepúlveda et al. improved the bounds of the operations.

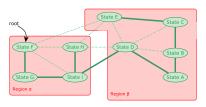


Example of compact planar graph

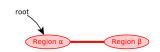
Related work


Succinct bitmap: Data structure that stores a secuenque of 0's and 1's

- rank_b(B, i) returns the number of bits set to b in B between the positions 0 and i (both included).
- select_b(B, i), which is the complementary operation of rank, returns the position in which the i-th bit of kind b is located in B.

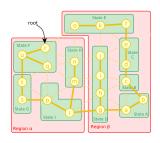


Example of a Bitmap


Proposed structure

County level planar graph

State level planar graph

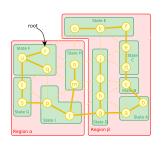


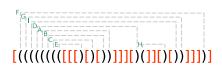
Region level planar graph

Proposed data structure

Compaction realized using the following components

- Compaction of each level using the same strategy of Fuentes-Sepúlveda et al.
- Bitmap B marks the entry and exit point to each region in the aggregation levels different from the highest level of aggregation.

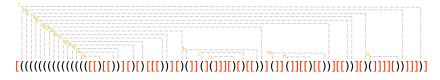

 $B_2 = 101010110110100001011010...$



Compact representation

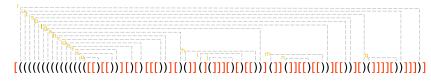
Change in the way of constructing the compact representation.

- DFS traversal performed at the highest granularity level L_h.
- Edge (u, v) will be traversed if both vertex v and the regions containing v at different levels have not been visited, or if v has not been visited and both u and v belong to the same region at a lower level of granularity.


 $B_2 = 101010110110100001011010...$

Operators

• go_up_L_h(c, i): Find the first region at level L_h that is contained by c. First we obtain $z = \operatorname{select}_((S_i, c))$, then we compute $y = \operatorname{select}_1(B_i, \operatorname{rank}_{()}(S_i, z))$, finally we report $\operatorname{select}_{()}(S_h, y)$.


Compact representation state level

Compact representation county level

Operators

• go_down_L_h(c, d): Find the region at level d that contains c. First we compute $p = \text{rank}_{()}(S_h, \text{select}_{(}(S_h, c)), \text{ then we obtain } q = \text{select}_{()}(S_{h-d}, rank_1(B_{h-d}, p)).$

Compact representation county level

Compact representation region level

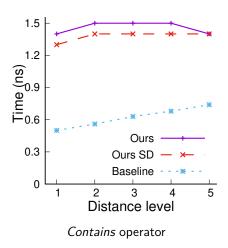
Operators

3 operations supported

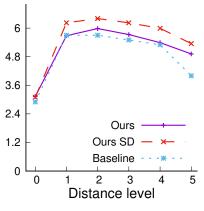
- Contains operator: Does region r_1 contains region r_2 ?. Operation supported in O(1).
- **Share boundary operator**: Does region r_1 shares an edge with region r_2 ?. Operation supported in $O(d_{r_1})$.
- Contained operator: List all regions at level L_j contained in region r_1 . Operation supported in $O(n_j)$.

Dataset

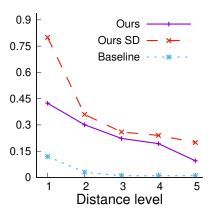
Dataset	Level	Vertex (n)	Edges (m)	
tiger_usa	L ₁ : States L ₂ : Counties L ₃ : Census tracts L ₄ : Census block groups L ₅ : Census blocks		597,784 26,732,935	
	L ₆ : Faces	19,735,874	43,837,150	
tiger_8s	L_1 : States L_2 : Counties L_3 : Census tracts L_4 : Census block groups L_5 : Census blocks L_6 : Faces	9 595 11,626 33,804 2,233,031 4,761,354	91,891 5,429,483	
tiger_az	L ₁ : States L ₂ : Counties L ₃ : Census tracts L ₄ : Census block groups L ₅ : Census blocks L ₆ : Faces	2 16 1,572 4,179 241,651 498,645		


Dataset

Dataset	Structure	Embedding	Hierarchy	Total
tiger_usa	Baseline	50.94	259.68	310.02
	Ours	50.94	37.54	88.48
	Ours SD	50.94	6.96	57.90
tiger_8s	Baseline	11.45	55.51	66.96
	Ours	11.45	12.21	23.66
	Ours SD	11.45	1.63	13.08
tiger_az	Baseline	1.32	5.51	6.83
	Ours	1.32	0.91	2.23
	Ours SD	1.32	0.19	1.51


Space occupied by each implementation in $\ensuremath{\mathsf{MB}}$

Experimental evaluation



Experimental evaluation

Shareboundary operator

Experimental evaluation

Contained operator

Conclusions and future work

- The proposed structure uses only $4\sum_{i=1}^{h} m_i + 2n_h(h-1) + o(hn_h)$ bits.
- The use of compressed bitmaps does not drastically change the performance of the developed algorithms.
- In practice, the proposed hierarchy representation uses about 20% of the space needed by the baseline, and less than 5% when using compressed bitmaps.
- Our model assumes that all regions composing a region at a lower level of detail are contiguous.

Compact Representation of Multi-Granular Topological Hierarchies

José Fuentes Sepúlveda, **Diego Gatica**, Gonzalo Navarro, Andrea Rodríguez, Diego Seco

March 24th, 2021