

 \mathbf{T}

Aharon Fruchtman | Yoav Gross | Shmuel T. Klein | Dana Shapira

Static & dynamic techniques

- Static coding
 - Prelude: Probability distribution.
- **Dynamic** backward **looking coding** (b-adp)
 - Prelude: Negligible, no description of the model is needed.
- Dynamic forward looking coding (f-adp)
 - Prelude: Exact frequencies of the elements.

Weighted coding

Given a file T = T[1, n] of n characters over an alphabet Σ . Define a general weight $W(g, \sigma, \ell, u)$:

- $g: [1, n] \rightarrow \mathbb{R}^+$
- $\sigma \in \Sigma$
- $1 \leq \ell \leq u \leq n$ boundaries of an interval.

$$W(g,\sigma,\ell,u) = \sum_{\substack{\ell \leq j \leq u \\ T[j] = \sigma}} g(j).$$

Weighted coding - example

$$W(g, b, 2, 8) = \sum_{\substack{2 \le j \le 8 \\ T[j] = b}} g(j) =$$

i	1	2	3	4	5	6	7	8	9	10
T	d	а	b	С	d	С	а	b	b	а
g(i)	1	4	2	8	3	5	6	3	1	7

Weighted coding - example

$$W(g, b, 2, 8) = \sum_{\substack{2 \le j \le 8 \\ T[j] = b}} g(j) = 5$$

i	1	2	3	4	5	6	7	8	9	10
Т	d	а	b	С	d	С	а	b	b	а
<i>g</i> (<i>i</i>)	1	4	2	8	3	5	6	3	1	7

Generalization

The constant function: $\mathbb{I} \equiv g(i) = 1$ for all *i*.

• Static coding:

 $W(\mathbb{I},\sigma,1,n)$

• Backward adaptive coding:

$$W(\mathbb{I}, \sigma, 1, i-1)$$

• Forward adaptive coding (f-adp):

 $W(\mathbb{I},\sigma,i,n)$

Coding example for $T = a^{32}b^{32}a$

🗖 a 🔳 b

Forward weighted coding

Relative to position *i*, using a decreasing function *g*:

$$W(g,\sigma,i,n) = \sum_{\substack{i \le j \le n \\ T[j] = \sigma}} g(j)$$

- Increased consideration to closer locations in front.
- Heavy prelude
 - Exact weights of the elements.

🗖 a 🗖 b

On our example we applied: $g(i) = 1.15^{n-i}$

f-weight (example)

$$W(1.15^{n-i}, \sigma, i, n) = \sum_{\substack{i \le j \le n \\ T[j] = \sigma}} 1.15^{n-i}$$

F-weight (example)

Backward weighted coding

Relative to position *i*, using an **increasing** function *g*:

$$W(g,\sigma,1,i-1) = \sum_{\substack{1 \le j \le i-1 \\ T[j] = \sigma}} g(j)$$

- Increased consideration to closer locations from behind.
- Negligible header

Sliding window

- An active window of size k, determined by the interval [i k, i 1] for position i.
- Ignores the beginning of the input file.

$$g(j) = \begin{cases} 1 & i - k \le j < i \\ 0 & \text{otherwise} \end{cases}$$

Division by 2

- Nelson (1996) rescaled the weights from time to time, to make sure that each character frequency may be represented by 16 bits.
- He noted that **division by 2** also improves the quality of the compression.
- Not completely ignore the beginning, but rather gives them less importance than closer ones.

- b-2 is a different backward method based on the division by 2.
- Uses some fixed number k of characters between the division points, rather than letting this number be controlled by technical issues.

$$g_{b-2}(i) = 2^{\left\lfloor \frac{i-1}{k} \right\rfloor} = \begin{cases} 1 & 1 \le i \le k \\ 2g_{b-2}(i-k) & \text{otherwise} \end{cases}$$

b-weight

- Refined version of g_{b-2} , rather than using the same values within a block.
- A fixed ratio between adjacent indices. For $i \ge 1$

$$g_{b-weight}(i) = \left(\sqrt[k]{2}\right)^{i-1}$$

• The fixed ratio of 2 between blocks is also maintained:

$$g_{b-\text{weight}}(i+k) = 2 \cdot \left(\sqrt[k]{2}\right)^{i-1} = 2g_{b-\text{weight}}(i)$$

Comparing methods for $T = a^{32}b^{32}a$

Running example - summary

• Storage requirements of the encoding methods on $T = a^{32}b^{32}a$:

		Header	r	H	Total
	a	b	bps		
static	33	32	0.246	1.000	1.246
b-adp	—	—	—	1.041	1.041
f-adp	33	32	0.246	0.948	1.194
f-weight	58115	664	0.600	0.260	0.860
b-weight	_	_	_	0.530	0.530
b-2	—	_	—	0.536	0.536

Choosing the constant k

- Choosing the constant k for b-2 and b-weight is a trial-and-error process.
- A trade-off between processing time and compression performance.
- Our experiments indicate that preprocessing even a small prefix of the file suffices to find satisfying values of *k*.

Analysis

• Evaluate the ratio, for $2 \le i \le n$:

$$p(g,i) = \frac{g(i)}{\sum_{j=1}^{i-1} g(j)}$$

- For **b-adp**, $p(\mathbb{I}, i) = \frac{1}{i-1} \rightarrow 0$
- For **b-2** and given constant k, for i large enough, $p(g_{b-2}, i) \in \left|\frac{1}{2k-1}, \frac{1}{k}\right|$

• For **b-weight** and given constant
$$k$$
, $p(g_{b-weight}, i) \rightarrow \sqrt[k]{2} - 1$

Experimental Results

• Compression performance (%) of different methods using arithmetic coding:

	H_0	static	b-adp	f-adp	b-2 (k)	b-weight (k)
SOURCES	69.21	69.21	69.21	69.21	64.38 (3,104)	62.58 (318)
XML	65.37	65.38	65.38	65.38	65.05 (35,840)	64.93 (6,314)
DNA	24.78	24.77	24.78	24.77	24.74 (141,312)	24.44 (85)
ENGLISH	56.61	56.61	56.61	56.61	56.24 (26,112)	56.06 (3,775)
PITCHES	70.41	70.42	70.42	70.42	57.55 (385)	46.05 (32)
PROTEINS	52.44	52.44	52.44	52.44	52.08 (34,304)	51.59 (407)

Experimental Results

• Compression efficiency as a function of progress on a prefix of sources of size 512KB:

Experimental Results - PPM

- PPM Prediction by Partial Matching.
- Compression
 performance (%) of
 different methods
 using PPM:

	r	H_r	PPM	b-2 (k)	b-weight (k)
SOURCES	$\frac{2}{3}$	$37.65 \\ 27.68$	$37.93 \\ 28.97$	$\begin{array}{rrr} 33.87 & (422) \\ 26.81 & (296) \end{array}$	29.66 (13) 25.36 (8)
XML	$\frac{2}{3}$	$\begin{array}{c} 25.09 \\ 16.53 \end{array}$	$25.24 \\ 17.21$	22.76 (832) 15.80 (472)	21.88 (81) 15.86 (42)
DNA	$\frac{2}{3}$	$\begin{array}{c} 24.06\\ 24.00 \end{array}$	$24.06 \\ 24.00$	$\begin{array}{rrrr} 23.99 & (4,656) \\ 23.95 & (3,406) \end{array}$	23.90 (129) 23.90 (216)
ENGLISH	$\frac{2}{3}$	36.53 29.83	$36.62 \\ 30.27$	35.90 (1,505) 29.73 (800)	35.55 (188) 29.89 (110)
PITCHES	$\frac{2}{3}$	51.74 43.21	$52.23 \\ 47.81$	$\begin{array}{rrr} 48.21 & (306) \\ 46.13 & (252) \end{array}$	44.73 (14) 47.81 –
PROTEINS	$\frac{2}{3}$	$51.82 \\ 50.43$	51.84 50.70	49.93 (160) 48.72 (126)	$\begin{array}{rrr} \textbf{49.82} & (76) \\ \textbf{49.14} & (72) \end{array}$

Thank you!

000		
000		
000		
000		
000		
000		