

# Super Resolution for Compressed Screen Content Video

Meng Wang<sup>1</sup>, Jizheng Xu<sup>2</sup>, Li Zhang<sup>2</sup>, Junru Li<sup>3</sup>, and Shiqi Wang<sup>1</sup> <sup>1</sup>Department of Computer Science, City University of Hong Kong, Hong Kong, China. <sup>2</sup>Bytedance Inc., San Diego CA. 92122 USA.

<sup>3</sup>Institute of Digital Media, Peking University, Beijing, China.

# Outline

- Introduction
- Compressed Screen Content Video SR Dataset
- Architecture of the proposed SR framework
- Compression and Perception Inspired Loss Function
- Experimental Results
- Conclusion

• Super Resolution (SR)



Low Resolution (LR)

High Resolution (HR)

Recovering high-resolution image/video from the low-resolution one



SR has been widely employed in various fields and computer tasks

• Super Resolution (SR)



- Natural Scene Videos
  - With sensor Noise
  - Smooth Content
- Screen Content Videos
  - Noise Free
  - Sharp Edges
  - High Contrast



A typical mixed content frame

- Screen content video with down-scaling coding and compression distortions
  - Block artifacts
  - Ringing artifacts
  - Blurring
  - ...











Compressed

# Compressed Screen Content Video SR Dataset

- 200 screen content video clips
- Local Mutations, rotations, cut-in, cut-off
- 1280x720, 960x480
- Plenteous types of scene
  - Webpages
  - Game scene
  - Documents
  - Cartoons
- Low resolution frames are generated with bicubic down-sampling and compressed with VTM-8.0
  - With QP 22, 27,32,37 and 42
  - All intra configuration



Examples of the Compressed Screen Content

# Architecture of the proposed SR framework



#### Shallow Feature Extractor



#### Deep Residual Feature Extractor



### Distortion Differential Channel Attention Module



#### Distortion Differential Guided Reconstruction



#### Compression and Perception Inspired Loss Function

$$F_{l}(HR_{i},SR_{i}) = \frac{2 \cdot \mu_{HR_{i}} \cdot \mu_{SR_{i}} + c_{1}}{\mu_{HR_{i}}^{2} + \mu_{SR_{i}}^{2} + c_{1}}$$

$$s(I) = |I \cdot \phi_{k1}| + |I \cdot \phi_{k2}|$$

$$F_{s}(HR_{i},SR_{i}) = \frac{2 \cdot s_{HR_{i}} \cdot s_{SR_{i}} + c_{1}}{s_{HR_{i}}^{2} + s_{SR_{i}}^{2} + c_{1}}$$

$$L_{LSSM} = \frac{1}{F_{l}(HR_{i},SR_{i}) \cdot F_{s}(HR_{i},SR_{i})}$$

$$L = \omega_{1} \cdot L_{2} + \omega_{2} \cdot L_{LSSM}$$

| 0  | 0  | 0  | 0  | 0  |
|----|----|----|----|----|
| 1  | 3  | 8  | 3  | 1  |
| 0  | 0  | 0  | 0  | 0  |
| -1 | -3 | -8 | -3 | -1 |
| 0  | 0  | 0  | 0  | 0  |
|    |    |    |    |    |

| 0 | 0 | 1  | 0  | 0  |
|---|---|----|----|----|
| 0 | 8 | 3  | 0  | 0  |
| 1 | 3 | 0  | -3 | -1 |
| 0 | 0 | -3 | -8 | 0  |
| 0 | 0 | -1 | 0  | 0  |

(a)  $\phi_1$ 

(b)  $\phi_2$ 

| 0            | 0  | 1  | 0 | 0 |  |  |  |
|--------------|----|----|---|---|--|--|--|
| 0            | 0  | 3  | 8 | 0 |  |  |  |
| -1           | -3 | 0  | 3 | 1 |  |  |  |
| 0            | -8 | -3 | 0 | 0 |  |  |  |
| 0            | 0  | -1 | 0 | 0 |  |  |  |
| (c) $\phi_3$ |    |    |   |   |  |  |  |

| 0     | 1 | 0 | -1 | 0 |  |  |
|-------|---|---|----|---|--|--|
| 0     | 3 | 0 | -3 | 0 |  |  |
| 0     | 8 | 0 | -8 | 0 |  |  |
| 0     | 3 | 0 | -3 | 0 |  |  |
| 0     | 1 | 0 | -1 | 0 |  |  |
| (1) / |   |   |    |   |  |  |

• Network Settings and Training Configurations

| Configurations        | BL Model EH Model                                                                                                       |         |                  |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------|---------|------------------|--|--|--|
| Filter Size           | 3x3                                                                                                                     |         |                  |  |  |  |
| Filter number         | 64 128                                                                                                                  |         |                  |  |  |  |
| Residual block number | 16                                                                                                                      | 3       | 2                |  |  |  |
| scale                 | 1                                                                                                                       | 0.1     |                  |  |  |  |
| Batch size            | 16                                                                                                                      | 10      |                  |  |  |  |
| LR input patch size   | 48x48                                                                                                                   |         |                  |  |  |  |
| Initial learning rate | 0.0001                                                                                                                  |         |                  |  |  |  |
|                       |                                                                                                                         | $eta_1$ | 0.9              |  |  |  |
| Optimizer             | ADAM                                                                                                                    | $eta_1$ | 0.999            |  |  |  |
|                       |                                                                                                                         | ε       | 10 <sup>-8</sup> |  |  |  |
| Training dataset      | DIV2K & $S_{22}$ /DIV2K & $S_{37}$ $S_{22}/S_{37}$                                                                      |         |                  |  |  |  |
| Test dataset          | $T_{ORG}, T_{QP22}, T_{QP27}, T_{QP32}, T_{QP37}, T_{QP42}$ $T_{ORG}, T_{QP22}, T_{QP27}, T_{QP32}, T_{QP37}, T_{QP42}$ |         |                  |  |  |  |

#### • Quantitative Evaluation

| Test Sets  | Bicubic | EDSR-BL $[3]$ | EDSR [3] | RCAN $[5]$ | $\mathcal{S}_{22}$ -BL | $\mathcal{S}_{37}	ext{-BL}$ | $\mathcal{S}_{22}$ -EH | $\mathcal{S}_{37}	ext{-EH}$ |
|------------|---------|---------------|----------|------------|------------------------|-----------------------------|------------------------|-----------------------------|
| $T_{ORG}$  | 26.076  | 30.619        | 31.493   | 31.744     | 33.794                 | 31.360                      | 34.583                 | 30.860                      |
| $T_{QP22}$ | 25.965  | 29.308        | 29.408   | 29.463     | 33.567                 | 31.476                      | 34.318                 | 30.998                      |
| $T_{QP27}$ | 25.852  | 28.718        | 28.683   | 28.618     | 32.435                 | 31.225                      | 33.080                 | 30.866                      |
| $T_{QP32}$ | 25.602  | 27.785        | 27.656   | 27.527     | 30.357                 | 30.591                      | 30.749                 | 30.452                      |
| $T_{QP37}$ | 25.084  | 26.443        | 26.302   | 26.157     | 27.601                 | 29.099                      | 27.638                 | 29.241                      |
| $T_{QP42}$ | 24.108  | 24.771        | 24.682   | 24.592     | 25.055                 | 26.000                      | 24.991                 | 25.981                      |
| Average    | 25.448  | 27.941        | 28.037   | 28.017     | 30.468                 | 29.959                      | 30.893                 | 29.733                      |

Table 1: Quantitative results regarding the PSNR of the proposed SR method

Table 2: Quantitative results regarding the SSIM of the proposed SR method

| Test Sets  | Bicubic | EDSR-BL $[3]$ | EDSR [3] | RCAN $[5]$ | $\mathcal{S}_{22}$ -BL | $\mathcal{S}_{37}	ext{-BL}$ | $\mathcal{S}_{22}$ -EH | $\mathcal{S}_{37}	ext{-}\mathrm{EH}$ |
|------------|---------|---------------|----------|------------|------------------------|-----------------------------|------------------------|--------------------------------------|
| $T_{ORG}$  | 0.886   | 0.949         | 0.956    | 0.958      | 0.963                  | 0.948                       | 0.966                  | 0.941                                |
| $T_{QP22}$ | 0.881   | 0.929         | 0.930    | 0.930      | 0.958                  | 0.946                       | 0.961                  | 0.942                                |
| $T_{QP27}$ | 0.878   | 0.919         | 0.918    | 0.917      | 0.949                  | 0.942                       | 0.952                  | 0.940                                |
| $T_{QP32}$ | 0.870   | 0.904         | 0.903    | 0.901      | 0.932                  | 0.934                       | 0.935                  | 0.934                                |
| $T_{QP37}$ | 0.859   | 0.883         | 0.881    | 0.879      | 0.903                  | 0.918                       | 0.904                  | 0.920                                |
| $T_{QP42}$ | 0.840   | 0.854         | 0.852    | 0.815      | 0.864                  | 0.880                       | 0.864                  | 0.833                                |
| Average    | 0.869   | 0.906         | 0.907    | 0.900      | 0.928                  | 0.928                       | 0.930                  | 0.918                                |

#### Qualitative Evaluation

• LR is compressed with QP22

| More Like This                                        |
|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| Performance and co<br>optimization in confi<br>system | Performance and co<br>optimization in confi<br>system | Performance and or<br>optimization in confi<br>system | Performance and co<br>optimization in confi<br>system | Performance and co<br>optimization in confi<br>system |
| IEEE Transactions (<br>Video Technology               | IEEE Transactions of<br>Video Technology              | IEEE Transactions<br>Video Technology                 | IEEE Transactions o<br>Video Technology               | IEEE Transactions (<br>Video Technology               |
| Published: 2006                                       |
| GT                                                    | Bicubic                                               | EDSR                                                  | RCAN                                                  | Proposed                                              |

• LR is compressed with QP27



- Qualitative Evaluation
  - LR is compressed with QP32



• LR is compressed with QP37



GT



Bicubic









Proposed

### Conclusion

- SR solutions for compressed screen content video
- Exploring the inner-properties and temporal inter-dependencies
- Design compression and perception inspired loss function
- A dataset for the SR of compressed screen content video



# Thank You !