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Introduction

• Super Resolution (SR)
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Introduction

• Super Resolution (SR)
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Introduction

• Natural Scene Videos
• With sensor Noise
• Smooth Content

• Screen Content Videos
• Noise Free
• Sharp Edges
• High Contrast
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A typical mixed content frame



Introduction

• Screen content video with down-scaling coding and compression 
distortions
• Block artifacts
• Ringing artifacts
• Blurring
• …
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Compressed Screen Content Video SR Dataset
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• 200 screen content video clips
• Local Mutations, rotations, cut-in, cut-off
• 1280x720, 960x480
• Plenteous types of scene

• Webpages
• Game scene
• Documents
• Cartoons

• Low resolution frames are generated with 
bicubic down-sampling and compressed with 
VTM-8.0
• With QP 22, 27,32,37 and 42
• All intra configuration Examples of the Compressed Screen Content



Architecture of the proposed SR framework
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Shallow Feature Extractor

9

𝑀$%! = 𝑆)*+
, (𝐿𝑅!)

𝑀$%!"# = 𝑆)*+
# (𝐿𝑅!"#)

𝑀-,
! = 𝑆)./ {𝑀$%! , 𝑀$%!"# }

𝑀!"!

𝑀!"!"#

𝑀!"
#



Deep Residual Feature Extractor
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Distortion Differential Channel Attention Module
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Distortion Differential Guided Reconstruction
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Compression and Perception Inspired Loss Function
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Experimental Results

• Network Settings and Training Configurations
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Configurations BL Model EH Model

Filter Size 3x3

Filter number 64 128

Residual block number 16 32

scale 1 0.1

Batch size 16 10

LR input patch size 48x48

Initial learning rate 0.0001

Optimizer ADAM

𝛽1 0.9

𝛽1 0.999

ϵ 10−8

Training dataset DIV2K & 𝑆&&/DIV2K & 𝑆'( 𝑆&&/𝑆'(
Test dataset 𝑇)"* , 𝑇+,&&, 𝑇+,&(, 𝑇+,'&, 𝑇+,'(, 𝑇+,-& 𝑇)"* , 𝑇+,&&, 𝑇+,&(, 𝑇+,'&, 𝑇+,'(, 𝑇+,-&



Experimental Results

• Quantitative Evaluation
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Experimental Results

• Qualitative Evaluation
• LR is compressed with QP22

• LR is compressed with QP27
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Experimental Results

• Qualitative Evaluation
• LR is compressed with QP32

• LR is compressed with QP37
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Conclusion

• SR solutions for compressed screen content video
• Exploring the inner-properties and temporal inter-dependencies
• Design compression and perception inspired loss function
• A dataset for the SR of compressed screen content video
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Thank You！
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