

Near-lossless Compression for Sparse Source Using Convolutional Low Density Generator Matrix Codes

Tingting Zhu and Xiao Ma Sun Yat-sen University Guangzhou, China zhutt@mail2.sysu.edu.cn, maxiao@mail.sysu.edu.cn

- Problem Statement
- Related Research
- Convolutional LDGM Codes
- Numerical Results
- Conclusions and Future Work

Problem Statement

山大學

Source & Entropy:

• A Bernoulli source, denoted as

 $U = U_0, U_1, ..., \text{ where } U_t \in \mathbb{F}_2 \triangleq \{0, 1\} \text{ for } t \ge 0,$

is independent and identically distributed (i.i.d.) according to $P_U(1) = \theta$ and $P_U(0) = 1 - \theta$.

- A sparse binary source ~ Bernoulli (θ), $0 < \theta < \frac{1}{2}$.
- The entropy of the source is defined by

$$H(U) \triangleq h(\theta) = -\theta \log \theta - (1 - \theta) \log(1 - \theta).$$

Problem Statement

中山大學

> Source Coding Theorem (Lossless Compression):

• Let code rate R > H(U). Then there exist fixed-length codes (ϕ_n, ψ_n) such that $R_n \leq R$ but BER $\rightarrow 0$. In the case when variable-length codes are allowed, we can make BER = 0.

Proof:

- This can be proved by at least three methods[#]:
 - □ Typical Set
 - □ Method of Types
 - □ Random Binning

*As proved in: T. M. Cover and J. A. Thomas, *Elements of Information Theory(Second edition),* John Wiley & Sons, Inc., Hoboken, New Jersey, 2006.

Problem Statement

Lossless Compression Algorithms

Huffman coding

Arithmetic coding

LZ77 / LZ78 / LZW

. . .

Fixed-to-variable or Variable-to-fixed or Variable-to-variable length codes

Limitations

Requirement: sufficiently long sequences

Efficiency: delay and complexity

Quality: the inherent error propagation

5/19

Fixed-to-fixed length Compression Scheme

• Let **G** be a binary matrix of size $k \times n$, has the form

$$\mathbf{G} = \begin{pmatrix} G_{0,0} & G_{0,1} & \cdots & G_{0,n-1} \\ G_{1,0} & G_{1,1} & \cdots & G_{1,n-1} \\ \vdots & \vdots & \vdots & \vdots \\ G_{k-1,0} & G_{k-1,1} & \cdots & G_{k-1,n-1} \end{pmatrix}$$

- The length of the sequence u to be compressed is k
- The length of the compressed sequence v is n
- The compression rate is defined as the code rate R = n/k.

6/19

- A linear block code of rate $R \triangleq \frac{n}{k}$:
 - Encoder $\varphi: \mathbb{F}_2^k \to \mathbb{F}_2^n$, $v = u\mathbf{G}$
 - **Decoder** ψ : $\mathbb{F}_2^n \to \mathbb{F}_2^k$, find \hat{u} such that $\hat{u}_G = v$ and $\mathbb{P}(\hat{u})$ is maximized.

山大學

Fixed-to-fixed length Compression Scheme

 *Given that the elements of G are independently and uniformly generated, the average decoding error probability

 $\Pr\{\psi(UG) \neq U\} \leq \varepsilon$

where ε is arbitrarily small, as long as $R > h(\theta)$ and $k \to \infty$.

• **#Such a code ensemble is said to be** *universal*.

*As proved in: I. Csiszár and J. Körner, *Information Theory: Coding Theorems for Discrete Memoryless Systems* (Second edition), Cambridge University Press, New York, 2011.

[#]As defined in: T. M. Cover and J. A. Thomas, *Elements of Information Theory(Second edition),* John Wiley & Sons, Inc., Hoboken, New Jersey, 2006.

山大學

Linear Block Codes

> **Definition**:

山大學

A linear block code ensemble is called a sparse random code ensemble

if the generator matrix has the form

$$\mathbf{G} = \begin{pmatrix} G_{0,0} & G_{0,1} & \cdots & G_{0,n-1} \\ G_{1,0} & G_{1,1} & \cdots & G_{1,n-1} \\ \vdots & \vdots & \vdots & \vdots \\ G_{k-1,0} & G_{k-1,1} & \cdots & G_{k-1,n-1} \end{pmatrix}$$

and $G_{i,j}(0 \le i \le k-1, 0 \le j \le n-1)$ is generated independently according to

the Bernoulli distribution with success probability $Pr{G_{i,j} = 1} = \rho < 1/2$.

> Lemma:

(高)中山大學

Over the sparse code ensemble defined by ρ < 1/2, the codeword v = uG with W_H(u) = w is a Bernoulli sequence with success probability

$$\rho_{w} \triangleq \Pr\{V_{j} = 1 \mid W_{H}(U) = w\} = \frac{1 - (1 - 2\rho)^{w}}{2}$$

Then we have $\rho_w \to \frac{1}{2}$ as $w \to \infty$.

• Furthermore, for any given positive integer $T \leq k$,

 $P_G(v_0^{n-1}|u) \triangleq \Pr\{V_0^{n-1} = v_0^{n-1}|U = u\} \leq P(0^n|u) \leq (1-\rho_T)^n,$

for all $u \in \mathbb{F}_2^k$ with $W_H(u) \ge T$ and $v_0^{n-1} \in \mathbb{F}_2^n$.

> Theorem:

山大學

• For any given positive $\rho < 1/2$, the code ensemble is *universal* in terms of bit-error rate (BER) for sparse sources. That is, for any source with $h(\theta) < R$, BER $\rightarrow 0$ as $k \rightarrow \infty$.

Proof:

• It can be proved by the method of typical set and the maximum-likelihood decoding algorithm.

$$BER(\boldsymbol{u}) = \frac{E[W_H(\hat{\boldsymbol{U}} - \boldsymbol{u})]}{k}$$

$$= \sum_{\hat{\boldsymbol{u}}} \Pr\{\hat{\boldsymbol{u}} \text{ is the most likely}, \hat{\boldsymbol{u}} \mathbf{G} = \boldsymbol{u} \mathbf{G}\} \frac{W_H(\hat{\boldsymbol{u}} - \boldsymbol{u})}{k}$$

$$\leqslant \frac{T}{k} + \sum_{\hat{\boldsymbol{u}}:W_H(\hat{\boldsymbol{u}} - \boldsymbol{u}) \ge T} \Pr\{P(\hat{\boldsymbol{u}}) \ge P(\boldsymbol{u}), \hat{\boldsymbol{u}} \mathbf{G} = \boldsymbol{u} \mathbf{G}\}$$

$$\leqslant \frac{T}{k} + 2^{k(H+\epsilon)} (1 - \rho_T)^n$$

$$= \frac{T}{k} + 2^{-k(R\log\frac{1}{1-\rho_T} - H - \epsilon)}.$$

$$k \to \infty$$

Tingting Zhu & Xiao Ma (SYSU)

DCC 2021

Related Research

💮 中山大 學

> Good channel codes can be leveraged for data compression.

Tingting Zhu & Xiao Ma (SYSU)

Related Research

Systematic Convolutional LDGM code Universal & Flexible

A New Scheme for Near-lossless Data Compression Using Convolutional LDGM Codes

12/19

> The main advantage is that no complex optimization is required to construct good codes.

DCC 2021

*X. Ma, "Coding theorem for systematic low density generator matrix codes," in *Proc. IEEE 9th Int. Symp. on Turbo Codes and Iterative Inf. Processing(ISTC)*, 2016, pp. 11–15.

[#]S. Cai, W. Lin, X. Yao, B. Wei, and X. Ma, "Systematic convolutional low density generator matrix code," [Online], 2019, Available: https://arxiv.org/abs/2001.02854.

wn yat-sen UNIVERSITY

Convolutional LDGM Codes

Encoding

- *L* blocks of data for compression, $u^{(0)}, u^{(1)}, \dots, u^{(L-1)}$
- Encoding memory $m \ge 0$
- Generator matrix G_i (0 ≤ i ≤ m): m + 1 matrices of size k × n, with each column generated randomly and independently from all unit vectors.

Figure: The framework of the proposed convolutional LDGM codes.

• Total code rate

 $R_L = n(L + m)/(kL) = n/k \cdot (L + m)/L \xrightarrow{L \to \infty} n/k.$

Decoding

🚳 中山大學

- Iterative sliding window decoding algorithm
- Decompress the **receiving** $v^{(t)}$ to estimate the **original data** $u^{(t)}$

Estimation of the Source Parameter

- Estimate the parameter of the source by $\widehat{\theta} = W_H (v^{(0)})/n$
- Initialize the assignment of $P(\mathbf{u}^{(0)})$ in iterative decoding.

Sliding Window Decoding

- Initialization
- Iteration
 - ✓ Forward recursion
 - ✓ Backward recursion

14/19

- ✓ Decision
- Cancelation

Decoding

山大學

- Normal graph: 3 types of constraint nodes
 - Node = : all the connecting variables take the same value;
 - Node + : all the connecting variables sum to zero over \mathbb{F}_2 ;
 - Node G_i : the *i*-th generator matrix.

Complexity Analysis

- Dominated by the operation at the node +.
- In each iteration, the total decoding complexity is given by *O(nm)*.

15/19

Figure: The normal graph of the proposed convolutional LDGM codes with memory m=2 and delay d=4.

Numerical Results

Universality of the proposed scheme

- > The gap w.r.t. theoretical limit: ≤ 0.098
- > Increase with the parameter θ
- ➢ In our simulations, 10⁵ blocks (>10⁸)
 - source digits) are simulated and no
 - errors are found in most cases except
 - that $\theta = 0.05$ (BER $\approx 10^{-5}$).

Figure: The compression rates with BER performance lower than 10⁻⁵.

Numerical Results

Decoding with / without the Knowledge about the Source Distribution

> The source distribution θ :

Given the fixed coding rate, BER decreases quickly with the source tending more sparse.

Encoding memory m:

BER can be lowered down by increasing m.

Figure: BER performance with and without θ (R=0.5, simulated blocks=10⁶).

Numerical Results

Table: Comparison of BER performance with and without θ (R=0.5, simulated blocks=10⁶).

θ	θ Known / θ Unknown	BER performance with different memories			
		m = 10	m = 12	m = 14	m = 16
0.08	Known	3.9E-4	8.1E-5	0	1.0E-9
	Unknown	3.8E-4	8.0E-5	1.0E-9	1.0E-9
0.09	Known	4.3E-4	9.0E-5	4.9E-5	2.0E-5
	Unknown	4.2E-4	9.0E-5	4.9E-5	7.8E-5
0.10	Known	4.7E-2	2.9E-2	4.6E-2	4.3E-2
	Unknown	4.8E-2	2.9E-2	4.6E-2	4.5E-2
0.11	Known	5.6E-2	5.5E-2	5.5E-2	5.5E-2
	Unknown	5.6E-2	5.6E-2	5.5E-2	5.5E-2

> No significant degradation in BER performance even if θ is unknown.

Conclusions and Future Work

A New Near-lossless Compression Scheme for Binary Sparse Source

- A fixed-to-fixed length encoding scheme
- ✓ Theoretical proof
- ✓ Practical scheme
- ✓ Estimate the source parameter
- Universal scheme for multiple sources
- Joint source-channel coding (JSCC)

山大學

Thank you for your attention!

