

Institute of Media, Information, and Network

Compressive Sensing via Unfolded *l*₀**-constrained Convolutional Sparse Coding**

Sun Jiaqi

2021.3.1

Regularization

K nonzero entries

$N \times 1$ sparse signal

Transform domain

Objective function:

$$\tilde{x} = \arg\min_{x=D\alpha} \{\frac{1}{2} \|\Phi D\alpha - y\|_2^2 + g(\alpha)\}$$

ill Problem

 $g(\alpha) = \|\alpha\|_0$

Non-convex, lower semi-continuous, semi-algebraic

 $g(\alpha) = \|\alpha\|_1$

convex, continuous

Conventional optimization methods:

Focal under determined system solver (FOCUSS) Iteratively reweighted least square (IRLS) Bayesian evolutionary pursuit algorithm (BEPA)

Advantages:

Strong convergence

• Theoretical analysis

Disadvantages:

- High computational complexity
- Hard to choose optimal transforms and tune parameters

 $)\}$

Deep Learning-based methods:

[1] Kulkarni K, Lohit S, Turaga P, et al. Reconnet: Non-iterative reconstruction of images from compressively sensed measurements [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 449-458.

[2] Yao H, Dai F, Zhang S, et al. Dr2-net: Deep residual reconstruction network for image compressive sensing[J]. Neurocomputing, 2019, 359: 483-493.

Final Output Image

Alternating Direction Multiplier Method(ADMM)-based:

ADMM-Net: A Deep Learning Approach for Compressive Sensing MRI [1] D-LADMM: Differentiable Linearized ADMM [2]

Only apply for $\Phi = PF$, which means the measurements sharing the same size with original signal

Iterative Shrinkage Thresholding Algorithm(ISTA)-based:

ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing [3]

- Solve a ℓ_1 -norm constraint problem
- Don't strictly follow the iterative optimization of ISTA ullet

[1] Sun J, Li H, Xu Z. Deep ADMM-Net for compressive sensing MRI[J]. Advances in neural information processing systems, 2016, 29: 10-18. [2] Xie, Xingyu, et al. "Differentiable linearized admm." International Conference on Machine Learning. PMLR, 2019.

[3] Zhang, Jian, and Bernard Ghanem. "ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

ADMM-Net

ADMM-Net[1]

Drawbacks:

- The sampling matrix must be $\Phi = PF$
- The framework failed to derive from ADMM strictly
- the objective function failed to obey theory of sparse coding

Convolutional Sparse Coding

Convolutional Sparse Coding

$$\min_{\{Z_i\}_{i=1}^m} \sum_{i=1}^m \|Z_i\|_0 \text{ s.t. } X = \sum_{i=1}^m d_i * Z_i$$

X: Original Signal
 Z_i : K-sparse signal
 d_i : Convolutional filters

Merits of CSC:

- Learns a shift-invariant dictionary.
- Reduces dictionary redundancy.

Drawback:

- ◆ slow convergence speed
- \blacklozenge rigid iterative structures of parameters.

sed Model: $\begin{array}{ll}
\min_{x,\alpha,z} \frac{1}{2} \|\Phi x - y\|_{2}^{2} + \lambda \Omega(z), \quad \text{s.t. } x = D\alpha = d * \alpha, z = \alpha \\
X = \sum_{i=1}^{m} d_{i} * Z_{i} \longrightarrow D \times Z
\end{array}$ sed Model: $\begin{array}{ll}
\max_{x,\alpha,z} \frac{1}{2} \|\Phi x - y\|_{2}^{2} + \lambda \Omega(z), \quad \text{s.t. } x = D\alpha = d * \alpha, z = \alpha \\
\Omega(z) = \|z\|_{0}
\end{array}$ **Proposed Model:** $D = [D_1, D_2, D_3 \cdots D_m]$ $D_i = Toep(d_i) = d_i *I$

Zeiler M D, Krishnan D, Taylor G W, et al. Deconvolutional networks[C]//2010 IEEE Computer Society Conference on computer vision and pattern recognition. IEEE, 2010: 2528-2535.

Objective function:
$$\min_{x,\alpha,z} \frac{1}{2} \|\Phi x - y\|_{2}^{2} + \lambda \Omega(z), \quad \text{s.t. } x = D\alpha = d$$

Steps: $\alpha^{t+1} = [I + \rho D^{T}D]^{-1}[\rho D^{T}(x^{t} - v^{t}) + (z^{t} - u^{t})]$
 $z^{t+1} = prox_{\|\cdot\|_{0}\lambda/\rho_{2}}(\alpha^{t+1} + u^{t})$
 $u^{t+1} = u^{t} + \alpha^{t+1} - z^{t+1}$
 $x^{t+1} = [I + \frac{1}{\rho_{1}} \Phi^{T}\Phi]^{-1}[\rho_{1}\Phi^{T}y + D\alpha^{t+1} + v^{t+1}]$
 $v^{t+1} = v^{t} + D\alpha^{t+1} - x^{t+1}$
 $u^{n-1} \qquad u^{n} \qquad u^{n}$
 $u^{n-1} \qquad u^{n} \qquad u^{n}$
 $u^{n-1} \qquad u^{n} \qquad u^{n}$

• Jiaqi Sun, Wenrui Dai, Chenglin Li, Junni Zou, Hongkai Xiong, "Compressive Sensing via Unfolded 10-constrained Convolutional Sparse Coding," DCC 2021.

10

d*lpha, z=lpha

Objective function:
$$\min_{x,\alpha,z} \frac{1}{2} \|\Phi x - y\| + \lambda \Omega(z), \quad s.t.x = D\alpha =$$

$$\mathbf{a}^{t+1} = \underbrace{[I + \rho D^T D]^{-1}}_{z^{t+1}} \rho D^T (x^t - v^t) + (z^t - u^t)] \mathbf{M} = \mathbf{B}^T \operatorname{Re} L$$

$$\mathbf{a}^{t+1} = prox_{\|\cdot\|_0 \lambda/\rho_2} (\alpha^{t+1} + u^t) \mathbf{M} = \mathbf{B}^T \operatorname{Re} L$$

$$\mathbf{a}^{t+1} = u^t + \alpha^{t+1} - z^{t+1}$$

$$x^{t+1} = [I + \frac{1}{\rho_1} \Phi^T \Phi]^{-1} [\rho_1 \Phi^T y + D\alpha^{t+1} + v^{t+1}] \mathbf{M}$$

$$\mathbf{b}^{t+1} = v^t + D\alpha^{t+1} - x^{t+1}$$

$$\mathbf{b}^{t+1} = v^t + D\alpha^{t+1} - x^{t+1}$$

• Jiaqi Sun, Wenrui Dai, Chenglin Li, Junni Zou, Hongkai Xiong, "Compressive Sensing via Unfolded 10-constrained Convolutional Sparse Coding," DCC 2021.

 $= d * \alpha, z = \alpha$

$Lu(\mathbf{B})$

strictly crative

oretical ee

erator $\mathcal{F}(x)$ is a positive definite operator.

Positive definite operator

• Jiaqi Sun, Wenrui Dai, Chenglin Li, Junni Zou, Hongkai Xiong, "Compressive Sensing via Unfolded 10-constrained Convolutional Sparse Coding," DCC 2021.

12

Dα Transposed Conv2d

• Jiaqi Sun, Wenrui Dai, Chenglin Li, Junni Zou, Hongkai Xiong, "Compressive Sensing via Unfolded 10-constrained Convolutional Sparse Coding," DCC 2021.

Reconstruction

Experiments:

 $\Phi \in \mathbb{R}^{M imes N}$

Methods	Measurment Rates				
	0.25	0.1	0.04	0.01	# •
ReconNet	25.60	24.28	20.63	17.27	
ISTA-Net	31.53	25.80	21.23	17.30	
ISTA-Net+	32.57	26.64	21.31	17.34	
Proposed	27.58	25.16	21.64	17.95	

Tabel.1 Reconstruction performance in PSNR (dB) obtained by the proposed method, ReconNet, ISTA-Net on the Set11 dataset under the MRs of 0.01, 0.04, 0.10, and 0.25.

algorithm	CS rate			
aigoritiini	0.01	0.04	0.	
ReconNet	18.97	21.66	24	
ISTA-Net	19.11	22.06	25	
My	19.65	22.21	24	

Table 2: Reconstruction performance in PSNR (dB) obtained by the proposed method, ReconNet, and ISTA-Net on the BSD68 dataset under the low MRs of 0.01, 0.04, and 0.10.

• Jiaqi Sun, Wenrui Dai, Chenglin Li, Junni Zou, Hongkai Xiong, "Compressive Sensing via Unfolded 10-constrained Convolutional Sparse Coding," DCC 2021.

Experiments:

$\Phi \in \mathbb{R}^{N imes N}$

Methods	ratio				
	10%	20%	30%	40%	
FFCSC	14.56	15.94	18.05	20.18	
ADMM-Net	26.98	29.7	31.8	34.23	
DLADMM	27.78	31.12	32.28	35.19	
Proposed	27.70	31.92	34.09	35.55	

Table 3: MRI Reconstruction performance in PSNR (dB) obtained by the proposed method, FFCSC, ADMM-Net, and DLADMM, when 10%, 20%, 30%, 40% and 50% pixels are missing.

• Jiaqi Sun, Wenrui Dai, Chenglin Li, Junni Zou, Hongkai Xiong, "Compressive Sensing via Unfolded 10-constrained Convolutional Sparse Coding," DCC 2021.

Contributions:

- The proposed method is the first attempt to develop a well-designed network architecture under the framework of ℓ_0 -constrained convolutional sparse coding.
- The proposed method bridges the gap between DNN-based and conventional optimized-based CS methods.
- The proposed method incorporates DNNs to enhance the efficiency of reconstruction by strictly following the iterative alternating optimization and this method is guaranteed to converge.

Institute of Media, Information, and Network

