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Introduction

+ Goal: accurate estimation of phase from speech
+ Importance of phase

1. Speech parameterization for TTS
2. Features for ASR
3. Detection of speech pathologies

+ Estimation of continuous phase spectrum
1. Detection of glottal closure instants (GCI)
2. Phase unwrapping

+ Minimum MSE-based complex cepstrum
analysis [Maia et al., 2013a]

I Complex cepstrum analysis with no phase unwrapping
I GCI are iteratively optimized in the process

+ Phase estimation can be performed using the same
concept!
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Typical phase estimation issues

Speech segmentation

I Detection of glottal closure instants
(GCIs)

I Influence of the shape and length of
the windows

pipi−1 pi+1 pi+2

Analysis windows

pi+3 pi+4

Speech signal

Pitch period onset times

Phase unwrapping

I Discrete Fourier transform
(DFT) gives phase modulo
2π

I Phase must be unwrapped
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Complex cepstrum-based speech analysis and synthesis

Analysis

1. Determine pitch period onset times (or GCI): {p0, . . . , pZ−1}
2. Complex cepstrum analysis

ĥ(n) =
1

2π

∫ π

−π
ln |S (eω)| eωndω +



2π

∫ π

−π
θ (ω) eωndω

↓ ↓ ↓
Cepstrum at pz Amplitude response at pz Phase response at pz

Synthesis

1. Derive non-causal impulse responses

h(n) =
1

2π

∫ π

−π
exp





C∑

p=−C
ĥ(p)e−ωp + ωn



 dω

↓ ↓
Impulse response at pz Cepstrum at pz

2. Make excitation e(n) with pulses located at pz
3. Synthesize speech by making s̃(n) = h(n) ∗ e(n)
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Proposed phase estimation approach

Reconstructed
Synthesis
filter

speech

s̃(n)
H(z)

Error
signal

...

a0
a1

a2

p0 p1 p2 pZ−1

Excitation e(n)

w(n)

s(n)

Pitch period onset
positions

Minimization

cepstrum

aZ−1

h(n)

of E
{
w2(n)

}

Impulse response

All-pass

ĥa(n)

h(n) = f
(
ĥa(n) + ĥm(n)

)

Natural
speech

Analysis
Minimum-phase cepstrum

ĥm(n)

+ Phase iteratively estimated by minimizing the error between natural and
reconstructed speech in the time domain

+ Pitch period onsets jointly optimized
+ No windowing: frame-based time-varying filtering
+ No phase unwrapping: cepstral domain
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Iterative estimation of phase: requirement

+ Pulse positions {p0, . . . , pZ−1} must correctly indicate
pitch periods but not necessarily GCI

+ Because
1. Smooth speech spectral envelope at pz

|Hz (e
ω)| =

∣∣∣∣∣∣

pz+1∑

n=pz−1

k (n− pz−1) s(n)e
−ωn

∣∣∣∣∣∣
, k(n) : window

2. Real cepstrum

ĥr(n) =
1

2π

∫ π

−π
ln |H (eω)| eωndω, n = −C, . . . , C

3. Minimum-phase cepstrum

ĥm(n) =





0 n < 0

ĥr(n) n = 0

2ĥr(n) n = 1, . . . , C
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All-pass/minimum-phase speech decomposition

s(n) = sm(n) ∗ sa(n)
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l
h(n) = hm(n) ∗ ha(n)⇒ ĥ(n) = ĥm(n) + ĥa(n)

l
Minimum-phase cepstrum

ĥm(n) =





0, −C ≤ n ≤ −1
ĥ(0), n = 0

ĥ(n) + ĥ(−n), 1 ≤ n ≤ C

All pass cepstrum

ĥa(n) =





ĥ(n), −C ≤ n ≤ −1
0, n = 0

−ĥ(−n), 1 ≤ n ≤ C

ĥm =
[
ĥm(0) · · · ĥm (C)

]>
Min.-phase cepstrum: amplitude and min. phase!

φ =
[
ĥa(1) · · · ĥa (C)

]
Causal all pass cepstrum: residual phase!
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Parameters of the model

...

Impulse response

Minimum−phase cepstrum

Pitch period onset positions

Excitation

Synthesis filter

Speech

Phase
features

s̃(n)

h(n)

ĥm(n)

a1
a2 aZ−1

p0 p1 p2 pZ−1

H
a0 e(n)

φ(n)

h(n) = f
(
ĥm(n) + ĥa(n)

)

+ Excitation parameters: hidden variables
I a = {a0, . . . , aZ−1}: pulse amplitudes
I p = {p0, . . . , pZ−1}: pulse locations

+ Non-causal synthesis filter parameters: variables to be
determined

I {φ0, . . . ,φT−1}: phase features at every frame
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A two-step optimization process at the utterance level

Step 1 Estimation of the locations and amplitudes of the
excitation signal

+ Keep ĥ(n) fixed
+ Optimize {p0, . . . , pZ−1} and {a0, . . . , aZ−1}

Step 2 Phase estimation given the new pulse positions
and amplitudes

+ Keep e(n) fixed
+ Re-estimate φ(n) using a gradient method

Ô Non-linear relationship between h(n) and
φ(n)

h(n) = f1 (φ(n))

↓

h(n) =
1

2π

∫ π

−π
exp

{
C∑

p=0

ĥm(p)e−ωp − 2

C∑

p=1

φ(p− 1) sin (ωp) + ωn

}
dω
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Step 1: estimation of {a0, p0, . . . , aZ−1, pZ−1}
H(z) fixed, e(n) to be optimized!

Reconstructed
Synthesis
filter

speech

s̃(n)
H(z)

Error
signal

...

a0
a1

a2

p0 p1 p2 pZ−1

Excitation e(n)

w(n)

s(n)

Pitch period onset
positions

Minimization

cepstrum

aZ−1

h(n)

of E
{
w2(n)

}

Impulse response

All-pass

ĥa(n)

h(n) = f
(
ĥa(n) + ĥm(n)

)

Natural
speech

Analysis
Minimum-phase cepstrum

ĥm(n)

Error vector

w = s− s̃ = s−
Z−1∑

z=0

azgpz

where

gn =

[
0 · · · 0︸ ︷︷ ︸

n

h>n 0 · · · 0︸ ︷︷ ︸
N−n−1

]>

hn =
[
hn
(
−M

2

)
· · · hn

(
M
2

)]>

Cost function and new positions and amplitudes

ε (p,a) =
1

N

[
s−

Z−1∑

z=0

azgpz

]> [
s−

Z−1∑

z=0

azgpz

]
⇒





p̂z = argmax
pz−∆p,...,pz+∆p

{
g>pz

[
s−

∑Z−1
i=0
i6=z

aigpi

]}2

g>pzgpz

âz =

g>pz

[
s−

∑Z−1
i=0
i6=z

aigpi

]

g>pzgpz

10



Step 2: estimation of {φ0, . . . ,φT−1}
e(n) fixed, H(z) to be optimized!

Reconstructed
Synthesis
filter

speech

s̃(n)
H(z)

Error
signal

...

a0
a1

a2

p0 p1 p2 pZ−1

Excitation e(n)

w(n)

s(n)

Pitch period onset
positions

Minimization

cepstrum

aZ−1

h(n)

of E
{
w2(n)

}

Impulse response

All-pass

ĥa(n)

h(n) = f
(
ĥa(n) + ĥm(n)

)

Natural
speech

Analysis
Minimum-phase cepstrum

ĥm(n)

Error vector

w = s− s̃ = s−
T−1∑

t=0

Atht

where
×...

...

M + 1

Frame t− 1

Frame t

Frame t + 1

M
2 samples

M
2 samples

At ht

K samples

Ô MatrixAt contains samples of e(n) at frame t

Ô Impulse response vector at frame t: ht =
[
ht
(
−M

2

)
· · · ht

(
M
2

)]>
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Step 2: estimation of {φ0, . . . ,φT−1}
+ MSE

ε =
1

N

[
s−

T−1∑

t=0

Atht

]> [
s−

T−1∑

t=0

Atht

]

+ Cost function

ε (φt) =
1

N

[
r>t rt − 2rtAtf1 (φt) + {f1 (φt)}>Utf1 (φt)

]

{
rt = s−

∑T−1
j=0,j 6=tAjf1 (φj)

Ut = A>t At

+ Relationship between impulse response and residual phase

ht = f1 (φt) =
1

2L
D2 exp

(
Dm,1ĥm,t +Da,1φt

)





Dm,1(i, j) = e−ωij −L+ 1 ≤ i ≤ L, 0 ≤ j ≤ C
Da,1(i, j) = −2 sin (ωij) −L+ 1 ≤ i ≤ L, 0 ≤ j ≤ C
D2(i, j) = eωji −M

2
≤ i ≤ M

2
,−L+ 1 ≤ j ≤ L

φt is determined by a gradient descent method!
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Experiment
Conditions

+ Female UK English speaker, 22.05 kHz, 50 sentences in each of the
following styles: angry, fear, happy, neutral, sad and tender

+ Methods evaluated
1. GCI detection using DYPSA [Naylor et al., 2007] + phase

unwrapping with a 8192-point DFT (g)
2. MSE cepstrum analysis (MSE-CCEP) as in [Maia et al., 2013b] (b)
3. Proposed (r)

Evaluation criterion

Speech
s(n)

Magnitude

IFFT and OLA

S̃(eω)

θ̂(ω)

S(eω) |S(eω)| Complex
spectrum spectrum

Pitch marks

synchronous

Estimated phase

spectral
analysis

Pitch

s(n)
Distortiondistortion

Time-domain

s̃(n)
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Results
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Iteration
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b−ang
m−ang
p−ang
b−fea
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p−fea
b−hap
m−hap
p−hap
b−neu
m−neu
p−neu
b−sad
m−sad
p−sad
b−ten
m−ten
p−ten

+ Proposed
method
performs better
than GCI
detection +
unwrapping for
all speech
styles

+ Proposed is
similar to
MSE-CCEP for
all styles
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Analysis-synthesis comparison with MSE-CCEP
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p−neu
m−sad
p−sad
m−ten
p−ten

+ MSE-CCEP
performs better
in terms of
analysis-
synthesis

+ MSE-CCEP
optimizes not
only phase but
also amplitude

+ In terms of
phase
estimation both
perform the
same

+ The proposed
method runs in
average 3 times
faster
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Conclusions

+ Method to estimate short-term residual phase using
complex cepstrum-based analysis and synthesis of speech

+ Accurate markings of the pitch periods are necessary
+ Better performance than GCI detection followed by

multi-resolution phase unwrapping
+ Similar performance to the more computationally

expensive MSE complex cepstrum analysis
+ An automatic way to extract phase information from pitch

marks, with no need of
+ Future work: application to TTS and ASR exact GCI

information
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