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‣ The classical approach to lossy compression subject to an MSE constraint:

‣ … is within .255 bits/sample of optimal for stationary Gaussian sources at 
high rates.

‣ Images are assumed to live on a low-D manifold with large linear span.

Classical Rate-Distortion Theory
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Success of Artificial Neural Network (ANN) Compressors

[from Ballé et al. ‘18] 
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[See also Ballé et al. ‘16, Theis et al. ‘17, Rippel and Bourdev, ‘17, Toderici et al. ‘17]
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Nonlinear Transform Coding (NTC)
‣ A high-level description:

‣ Versus classical approach:
‣ Learned (data-driven) vs. modeled
‣ Multilevel perceptron (MLP) vs. Karhunen-Loève Transform (KLT)

‣ Is this scheme optimal for some image-like source models?

ECDQ bitsMLP iECDQ MLP
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The Sawbridge
‣ Let U be unif[0,1] and

‣ Donoho, Vetterli, DeVore, and Daubechies ‘98 (“Ramp”); Meyer ‘92
‣ Image-like:

‣ Two regions separated by a prominent edge (Donoho et al. ‘98)
‣ Support set is a 1-D manifold with infinite linear span
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A Nonlinear Solution
‣ If

‣ Then

‣ Note that the “analysis” transform f is linear in this case. 
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Optimal Compression

Proof steps: 
‣ Any quantizer for X(.) can be viewed as a quantizer for U. 
‣ Show the best quantizers for U use contiguous cells.
‣ Apply György and Linder ‘00 to solve nonconvex cell-size opt. problem 
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So KLT + waterfilling + ECDQ is exponentially suboptimal 
(cf. Donoho et al. ‘98)
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‣ Sample sawbridge at J = 1024 points to create vector
‣ The MLPs:

‣ Have 3 layers with 100 nodes per layer (except last)
‣ Have Leaky ReLU activation functions at each layer (except last)

‣ The overall system is trained via SGD to initially minimize the Lagrangian

which is gradually annealed to

‣ For linear transforms, we take single-layer MLPs with affine activations

Experimental Approach

ECDQ
bitsMLP iECDQ MLP
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[Agustsson 
and Theis ‘20]



Numerical Results

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
SNR [dB]

0

10

20

30

40

50

60

En
tro

py
 [b

its
]

H( )



Numerical Results

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
SNR [dB]

0

10

20

30

40

50

60

En
tro

py
 [b

its
]

H( )
Nonlinear



Numerical Results

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
SNR [dB]

0

10

20

30

40

50

60

En
tro

py
 [b

its
]

H( )
Nonlinear
KLT



Numerical Results

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
SNR [dB]

0

10

20

30

40

50

60

En
tro

py
 [b

its
]

H( )
Nonlinear
KLT
Linear



Numerical Results

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
SNR [dB]

0

10

20

30

40

50

60

En
tro

py
 [b

its
]

H( )
Nonlinear
KLT
Linear
DCT
Daub4



KLT and Compression



Numerical Results
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Conclusion

‣ The sawbridge is a simple image model capturing edges and manifold structure 
for which:

‣ The optimal compressor can be exactly characterized.

‣ Trained ANNs are (numerically) optimal and beat the classical KLT-based 
approach by an exponential margin.

‣ Provides one answer to the question “For what sources are artificial neural 
networks optimal compressors?”
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Conclusion

Extended version:
https://arxiv.org/abs/2011.05065

Code:
 https://github.com/tensorflow/compression/tree/master/models/toy_sources
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