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Classical Rate-Distortion Theory

»  The classical approach to lossy compression subject to an MSE constraint:

> X1

bits _>)%2

[S1U121J202 Wiojsuel]]

> ... IS within .255 bits/sample of optimal for stationary Gaussian sources at
high rates.

> Images are assumed to live on a low-D manifold with large linear span.
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Nonlinear Transform Coding (NTC)

> A high-level description:

[so|qelieA juaie|]

> Versus classical approach:
> Learned (data-driven) vs. modeled
> Multilevel perceptron (MLP) vs. Karhunen-Loeve Transform (KLT)

> Is this scheme optimal for some image-like source models?
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The Sawbridge

> Let U be unif[0,1] and
Xt)=t—1(U<t) te[0,1]

T

|
U-1t

> Donoho, Vetterli, DeVore, and Daubechies ‘98 (“Ramp”); Meyer ‘92
> Image-like:

» Two regions separated by a prominent edge (Donoho et al. ‘98)
> Support set is a 1-D manifold with infinite linear span



The KLT

Theorem (Wagner and Ballé): The sawbridge can be expanded as
X(t)= > i (t)
k=1
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The KLT

Theorem (Wagner and Ballé): The sawbridge can be expanded as

o0
X)) =D Yiou(t)
k=1 Same autocorrelation
where {¢x(-)}* , is the orthonormal basis | @S the Brownian Bridge

o (t) = V2 - sin(mkt)
and
Yk =—+2A cos(mkU)

IS @ sequence of zero-mean, uncorrelated random variables, with Yg

having variance
1
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The KLT

Corollary: If f : L2[0,1] — RK and g : RK — L2[0, 1] then it is not
possible to simultaneously satisfy the conditions:

1. f and g are linear
2. k is finite
3. g(f(X(-))) =X(-) a.s.
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A Nonlinear Solution

> If 1

f(x(-))= f x(t) dt

0

gly)(t)=t—1(y+1/2Lt)

g(f(X(-)) =X(-) a.s.

U=20 U=1/2 U=1

> Note that the “analysis” transform fis linear in this case.



Optimal Compression

Def: An encoder is a map f : L2[0,1] — N. The entropy-distortion
function of the sawbridge is

H(A) = i?fH(f(X(')))

1
subject to A > EU (X(t)— E[X(O|FX(D]D? dt}
0
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Theorem (Wagner and Ballé '21): If A > 1/6, then H(A) = 0. For
any 0 <A <1/6, we have

1
H(A)=—bJ-plogp—qlogq,

where g = (1 —[ Jp) and p is the unigue number in (0, 1) such that

1
p

1
{—J-p2 + g% = 6A.
p

Proof steps:
> Any quantizer for X(.) can be viewed as a quantizer for U.
> Show the best quantizers for U use contiguous cells.
> Apply Gyorgy and Linder ‘00 to solve nonconvex cell-size opt. problem
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Optimal Compression

Theorem (Wagner and Ballé '21): If A > 1/6, then H(A) = 0. For
any 0 <A <1/6, we have

1
H(A)=—bJ-plogp—qlogq,

where g = (1 —[ Jp) and p is the unigue number in (0, 1) such that

1
p

1
{—J-p2 + g% = 6A.
p

Corollary (Wagner and Ballé '21): For the sawbridge,

lim
A—0

1
H(A)—log—| =0.
(A) QGA‘
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Theorem: (Wagner and Ballé '21): Let

Hxi1(A) = entropy of dithered quant. + waterfilling of KLT coefficients.
Then
lim H N)-A=
lim kLT (A) C
~.3

2 1
_ ﬁ.(Jo A(S() * U 7)) dx—log(m/12‘y/e)),

where h(-) is differential entropy, s(-) is the arcsine density, ux(:) is
the uniform density over [—x/2, x/2], ¥ is the unique solution to the

fixed-point equation tan=1(m/¥) = n‘lﬁ and = is convolution.




KLT and Compression

Theorem: (Wagner and Ballé '21): Let

Hxi1(A) = entropy of dithered quant. + waterfilling of KLT coefficients.
Then

~ .3

So KLT + waterfilling + ECDQ is exponentially suboptimal
(cf. Donoho et al. ‘98)
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[sa|qeluen juaie|]

> Sample sawbridge at / = 1024 points to create vector X
> The MLPs:
> Have 3 layers with 100 nodes per layer (except last)
> Have Leaky RelLU activation functions at each layer (except last)
> The overall system is trained via SGD to initially minimize the Lagrangian
minEx g[—1og q(f(X) + 0) + A|IX — g(f(X) + 0)|]?]

f.9.9
which is gradually annealed to

min Ex[—109 g(QU (X)) + AlIX = g(QURII]

> For linear transforms, we take single-layer MLPs with affine activations

[Agustsson
and Theis ‘20]
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KLT and Compression

Theorem: (Wagner and Ballé '21): Let

Hxi1(A) = entropy of dithered quant. + waterfilling of KLT coefficients.
Then
lim H N)-A=
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where h(-) is differential entropy, s(-) is the arcsine density, ux(:) is
the uniform density over [—x/2, x/2], ¥ is the unique solution to the

fixed-point equation tan=1(m/¥) = n‘lﬁ and = is convolution.
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> The sawbridge is a simple image model capturing edges and manifold structure
for which:

> The optimal compressor can be exactly characterized.

> Trained ANNs are (numerically) optimal and beat the classical KLT-based
approach by an exponential margin.

> Provides one answer to the question “For what sources are artificial neural
networks optimal compressors?”



Conclusion

Extended version:
https://arxiv.org/abs/2011.05065

Code:

https://github.com/tensorflow/compression/tree/master/models/toy sources
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