Introduction Proposed method Simulations Conclusion
0000 00000000 [e]e]e] ]

Fast variational Bayesian signal recovery in the presence of Poisson-Gaussian Noise. 1/17
S T A N

Fast variational Bayesian signal recovery in the
presence of Poisson-Gaussian Noise.

Y. Marnissil, Y. Zheng?, and J.-C. Pesquet!

1 Université Paris-Est, LIGM, UMR CNRS 8049, Champs sur Marne, France
2 IBM Research, China
Presented by: Amel Benazza-Benyahiya3
3 COSIM Lab., SUP’COM, Carthage Univ., Cité Té chnologique des
Communications, Tunisia

March 22th 2016

UNIVERSITE
PARIS-EST
MARNE-LA-VALLEE




Introduction Proposed method Simulations Conclusion
@000 00000000 [e]e]e] ]

Fast variational Bayesian signal recovery in the presence of Poisson-Gaussian Noise. 2/17

Mixed Poisson Gaussian noise

General model

We observe y € RN according to the following model
y=z+w.
e zc RN ~~ Poisson noise (z ~ P(Hx))
e xeRQ ~ unknown original signal
e HcRVXQ ~~ observation operator
e wcRN -~ additive Gaussian noise (w ~ A(0, 0?))

WHERE?

CCD camera images |Healey et al. 1094
Medical images [INichols et al. 2002]
Biological images (fluorescence microscopy) |[Pawley 1994]

vV vV.vY

Astronomical images |Benvenuto et al. 2008]
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Mixed Poisson Gaussian noise

Xmax = 20 Xmax = 60 Xmax = 100 Xmax = 150
0?=9 0% =36 0% =36 0?2 =40
H blur with PSF H blur with PSF H blur with PSF H blur with PSF
h: Uniform 5 x 5 h: Gaussian 9 x 9 h: Uniform 3 x 3  h: Gaussian 7 X 7
std 0.5 std 1

~  Provide an estimate X of x from the collected data y.
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Bayesian formulation

y=z+w, z~ P(Hx), w ~ N(0,0?)

M /420 —[Hx]; ([Hx].)" e~ 5z 0i—n)?
o1~ 1 e

i=1 \n=1

a—1

. Q
p(x [ 7) = 7y2 exp (7 2 IDjX||2”> p(7) o< v~ exp(—57)

j=1

P(x [y,7) o< p(x [ v)p(y | x)p(7)-

X DIFFICULTIES: p(x |y,7) of a complicated form
» MAP estimation: tuning parameters
» Posterior mean: intractable

v" SOLUTIONS:

» MCMC methods: computationally expensive
>
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Variational Bayesian methodology

Let us denote O the set of the unknown parameters

provide a separable approximation
q(®) = Hle q(©j) of the true posterior distribution p(@® | y)

q°Pt = argmin KL(q(O)||p(© | y)) st. qisap.d.f
q

where
KE@@)p(@ ) = [ q(e)p("cfﬁ)y) d©

An analytical solution (classical variational Bayesian methods) is :
(v € {L....J}) (@) o exp ({p(y, Oy, e(0)))
where ()11 g, = [ - 1li; 9(8i) d©;

5/17
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Assumptions and approximations

e SEPARABILITY: We assume that

q(©) = q(x)q(7)

e GENERALIZED ANSCOMBE TRANSFORM (GAST)
APPROXIMATION
The likelihood of vector § € RM with components

(Vi)i<i<m =2 (\/y,- + 5)1§i§M , Where 6 = % + 02, is
approximately given by

M 2
p(y | x) = 1;[1 \/12—7Te><p <—% ()7,- - 2\/[HX],-+5) )

X DIFFICULTIES: p(x,v |y) is of a complicated form

v' SOLUTIONS: Majorizing approximations
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Construction of the majorizing approximations

e MAJORANT FUNCTION OF THE NEG-LOG LIKELIHOOD :
Let w = (Wi)lgiSM € [0, +OO)M.
Since the function t — +/t 4+ 0 is concave with a Lipschitz

M
continuous gradient, then T(¥,x;w) = > Ti(¥i, [Hx];; w;)
i=1

where, for every i € {1,..., M},

Ty, [Hx];; wi) = %?? +2([Hx]; +0) = 25/ wi +6
— §i (wi +0)72 ([Hx], — wy)
36715 (W, — wi)?

is a majorant of — logp(y | x).
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Construction of the majorizing approximations

e MAJORANT FUNCTION OF THE NEG-LOG PRIOR OF X :
Let A = (Aj)lﬁl'SQ S [0, +OO)Q.
Using the following inequality:

(Vo > 0)(Vr > 0) o < (1— k)" + ko™ tu,

Q
then Q(x,7; A)=>_ Qj(Djx,~; A;) where for every
j=1
Jje{1,...,Q},

,Y"i”DjX”Z + (1= RN

(el QY QD1 A) = e
J

is a majorant of — log p(x).
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Construction of the majorizing approximations

Let

L(O[§; w, A) = C(§) exp [ T(¥,x;w) — Q(x,v; A)] p(7)

where C(§) = p(§)~1(27)"M/272:

Then
> p(®]y) = L(O[y;w, A)
» KL(q(®)|[p(O® | §)) < KL(q(O)||L(O]y; w, X))
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Let ©(x,7), q(©) = q(x)q(7)
q(@) = arg;nin/CE(q(@)Hp(@ 'y) (1)

Then Thus, Problem (1) can be solved by alternating the following
steps:
» Mimimize KL(q(©)|L(O|y; w, X)) w.r.t. g(x),
» Update the auxiliary variable w in order to minimize
KL(q(®)|IL(O]y;w,A)),
> Update the auxiliary variable X in order to minimize
KL(q(©)[|L(O]y; w, A)),
» Mimimize the KL(q(©)||L(Oly;w, X)) w.r.t. g(v).
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Updating g(x)

ktl(x e ( In L(x,, ;wk,)\k )
q" 7 (x) ocexp <n( 7Y )>qk(w)

xexp ( / n L(x,%y;wk,v)qk(v)d7>

D'AD,

— _3 . ~
{ T}, =16"3HT Diag(§)H + 2Eq,)

my, :Zk-s-lHTUa
where
= (ui)1<icm, Ui = Fi(wk +8) 2 + 1563wk — 2
® u= (Ul)lélgM: uj = )/I(Wi + ) + 5Yi w;
e A is the diagonal matrix whose diagonal elements are

(/ﬁ()\J’-‘)’**llg)

1<j<Q

Conclusion

[¢]

(1)

11/17
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Conclusion
]

11/17

Updating g(x)

k+1 e (l L LY k,Ak )
q "7 (x) xexp <n (x,7,y;w )>qkm

x exp (/ In L(x,7,y; wk, Ak)qk('y)d7>

Tl =16 7HT Diag(§)H + 2E

DTAD,
mey1 =X H u,

7)

(1)

e X, is approximated by a diagonal matrix

e my_; is approximated iteratively using conjugate gradient
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Updating w and A

wk T =argminKCL(q" ! (x)g*(7)[|L(O]F; w* T, X))

M
=argmin Y _ Ti(§i, [Hmyia]; wi),
Yooz
= max{[Hmy,];, 0}

AFL = argmin KL(q" (x)q"* (1) L(B]F; w T, X))
A;€[0,4-00)

= Eqk+1(x) [||D_,X||2]
= HDjmk+1H2 -+ trace {DJTDjzkle}
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Updating q(7)

kil Cw k1l \k+1
q (’y) x exp (<|n L(x777va ’)‘ )>qk+1(x))
exp (/In L(x’%y;Wk+1,>\k+1)qk+1(x)dX>
= G(7; akt1, br+1)

ak+1 = % +a=a,
b = S (AT + 8,
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Experiments

e Different count levels Xmax
e Comparison with variationnal approaches:
» different PG likelihood approximations: Generalized Anscombe
Transform (GAST), the Exponential likelihood (Exp), the
Exact likelehood (Exact)
» different optimization algorithms: Spectral projected gradient
, Primal-dual splitting algorithm

14/17
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Visual results

e

<

From top to bottom: Original images: xmax = (20, 60, 100, 150).
Degraded images: SSIM=(0.232, 0.423, 0.561, 0.586). Restored images
with the proposed approach: SSIM=(0.575, 0.653, 0.765, 0.830).
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MAP (GAST) [PG] | MAP (GAST) [PD] | MAP(EXP) [PD] | MAP (Exact)[PD] | BV (GAST)
v fixed fixed fixed fixed automatic
First image (350 x 350): xmax = 20 SNR 13.61 13.60 13.72 13.73 13.80
h: Uniform 5 x 5, 0% =9 Time (s.) | 2897 490 3124 48587 29
v fixed fixed fixed fixed automatic
Second image (257 x 256): Xmax =60 [ SNR 1535 15.33 15.42 15.43 15.22
h: Gaussian 9 x 9, std 0.5, 0 = 36 Time (s.) | 3168 86 112 612 7
v fixed fixed fixed fixed automatic
Third image (256 x 256): Xmax =100 | SNR 1371 13.77 13.81 13.81 14.17
h: Uniform 3 x 3, 0? = 36 Time (s.) | 2921 578 1060 17027 9
v fixed fixed fixed fixed automatic
Fourth image (256 x 256): Xmax = 150 [ SNR 20.17 20.11 20.11 20.33 20.43
h: Gaussian 7 x 7, std 1, 0 = 40 Time (s.) | 2964 886 3026 43397 14

PG: projected gradient algorithm
Simulations performed on an Intel(R) Xeon(R) CPU E5-2630, @ 2.40 GHz,

using a Matlab 7 implementation

PD: primal dual algorithm

e Comparable quantitative results with variational approaches

e Regularization parameter automatically tunned

e Competitive computation time
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In a nutshell...

~ for restoration of images

corrupted with mixed Poisson Gaussian noise
~» Compared to variational approaches, the proposed method
shows:
V' good quantitative and qualitative results
v/ competitive computation time
~> Future work: extension to other PG likelihood approximations
and others prior distributions
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