Introduction	Proposed method	Simulations	Conclusion
0000	0000000	000	0
Fast variational Bayesian signal recovery in the presence of Poisson-Gaussian Noise.			1/17
Tast variational Dayesian	signal recovery in the presence of roisson	Gaussian Noise.	1/11

Fast variational Bayesian signal recovery in the presence of Poisson-Gaussian Noise.

Y. Marnissi¹, Y. Zheng², and J.-C. Pesquet¹

 ¹ Université Paris-Est, LIGM, UMR CNRS 8049, Champs sur Marne, France
² IBM Research, China
Presented by: Amel Benazza-Benyahiya³
³ COSIM Lab., SUP'COM, Carthage Univ., Cité Té chnologique des Communications, Tunisia

March 22th 2016

Introduction	Proposed method	Simulations	Conclusion
●000	0000000	000	0
Fast variational Bayesian si	gnal recovery in the presence of Poisson-	Gaussian Noise.	2/17

Mixed Poisson Gaussian noise

General model

We observe $\mathbf{y} \in \mathbb{R}^N$ according to the following model $\mathbf{y} = \mathbf{z} + \mathbf{w}.$ • $\mathbf{z} \in \mathbb{R}^N$ \rightsquigarrow Poisson noise $(\mathbf{z} \sim \mathcal{P}(\mathbf{H}\mathbf{x}))$ • $\mathbf{x} \in \mathbb{R}^Q$ \rightsquigarrow unknown original signal • $\mathbf{H} \in \mathbb{R}^{N \times Q}$ \rightsquigarrow observation operator • $\mathbf{w} \in \mathbb{R}^N$ \rightsquigarrow additive Gaussian noise $(\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2))$

WHERE?

- ► CCD camera images [Healey et al. 1994]
- Medical images [Nichols et al. 2002]
- Biological images (fluorescence microscopy) [Pawley 1994]
- Astronomical images [Benvenuto et al. 2008]

Introduction	Proposed method	Simulations	Conclusion
0000	0000000	000	0
Fast variational Bayesian signal recovery in the presence of Poisson-Gaussian Noise.			3/17

Mixed Poisson Gaussian noise

 \rightarrow Provide an estimate $\hat{\mathbf{x}}$ of \mathbf{x} from the collected data \mathbf{y} .

Introduction	Proposed method	Simulations	Conclusion
0000	0000000	000	0
Fast variational Bayesian signa	Fast variational Bayesian signal recovery in the presence of Poisson-Gaussian Noise.		

Bayesian formulation

Observation model: $\mathbf{y} = \mathbf{z} + \mathbf{w}$, $\mathbf{z} \sim \mathcal{P}(\mathbf{H}\mathbf{x})$, $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2)$

$$\mathsf{p}(\mathbf{y} \mid \mathbf{x}) = \prod_{i=1}^{M} \left(\sum_{n=1}^{+\infty} \frac{e^{-[\mathsf{H}\mathbf{x}]_i} \left([\mathsf{H}\mathbf{x}]_i \right)^n}{n!} \frac{e^{-\frac{1}{2\sigma^2} (y_i - n)^2}}{\sqrt{2\pi\sigma^2}} \right)$$

PRIOR DISTRIBUTIONS: $p(\mathbf{x} \mid \gamma) = \tau \gamma^{\frac{N}{2\kappa}} \exp\left(-\gamma \sum_{j=1}^{Q} \|\mathbf{D}_{j}\mathbf{x}\|^{2\kappa}\right) \qquad p(\gamma) \propto \gamma^{\alpha-1} \exp(-\beta\gamma)$ BAYES FORMULA: $p(\mathbf{x} \mid \mathbf{y}, \gamma) \propto p(\mathbf{x} \mid \gamma)p(\mathbf{y} \mid \mathbf{x})p(\gamma)$.

X DIFFICULTIES: $p(\mathbf{x} | \mathbf{y}, \gamma)$ of a complicated form

- MAP estimation: tuning parameters
- Posterior mean: intractable

 \checkmark Solutions:

- MCMC methods: computationally expensive
- Variational Bayesian (VB) approaches

Introduction	Proposed method	Simulations	Conclusion
0000	0000000	000	0
Fast variational Bayesian	signal recovery in the presence of Poisson-0	Gaussian Noise.	5/17

Variational Bayesian methodology

Let us denote Θ the set of the unknown parameters

PRINCIPLE: provide a separable approximation $q(\boldsymbol{\Theta}) = \prod_{j=1}^{J} q(\Theta_j)$ of the true posterior distribution $p(\boldsymbol{\Theta} \mid \mathbf{y})$

OPTIMIZATION PROBLEM:

$$q^{opt} = \operatorname*{argmin}_{q} \mathcal{KL}(q(oldsymbol{\Theta}) \| p(oldsymbol{\Theta} \mid oldsymbol{y})) \quad ext{s.t.} \quad ext{q is a p.d.f}$$

where

$$\mathcal{KL}(q(\mathbf{\Theta}) \| \mathsf{p}(\mathbf{\Theta} \mid \mathbf{y})) = \int q(\mathbf{\Theta}) rac{q(\mathbf{\Theta})}{\mathsf{p}(\mathbf{\Theta} \mid \mathbf{y})} \; d\mathbf{\Theta}$$

An analytical solution (classical variational Bayesian methods) is :

$$\begin{array}{ll} (\forall j \in \{1, \ldots, J\}) \ q(\Theta_j) \propto \ \exp\left(\langle \mathsf{p}(\mathbf{y}, \mathbf{\Theta}) \rangle_{\prod_{i \neq j} q(\Theta_i)}\right), \\ \\ \text{where } \langle \cdot \rangle_{\prod_{i \neq j} q(\Theta_i)} = \int \cdot \prod_{i \neq j} q(\Theta_i) \ d\Theta_i \end{array}$$

Introduction	Proposed method	Simulations	Conclusion
0000	0000000	000	0
Fast variational Bayesian si	ignal recovery in the presence of Poisson-O	Gaussian Noise.	6/17

Assumptions and approximations

• SEPARABILITY: We assume that

$$q(\mathbf{\Theta}) = q(\mathbf{x})q(\gamma)$$

• GENERALIZED ANSCOMBE TRANSFORM (GAST) APPROXIMATION

The likelihood of vector $\tilde{\mathbf{y}} \in \mathbb{R}^M$ with components $(\tilde{y}_i)_{1 \leq i \leq M} = 2 \left(\sqrt{y_i + \delta} \right)_{1 \leq i \leq M}$, where $\delta = \frac{3}{8} + \sigma^2$, is approximately given by

$$p(\tilde{\mathbf{y}} \mid \mathbf{x}) = \prod_{i=1}^{M} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\tilde{y}_{i} - 2\sqrt{[\mathbf{H}\mathbf{x}]_{i} + \delta}\right)^{2}\right)$$

X DIFFICULTIES: $p(\mathbf{x}, \gamma | \mathbf{y})$ is of a complicated form \checkmark SOLUTIONS: Majorizing approximations

Introduction	Proposed method	Simulations	Conclusion
0000	0000000	000	0
Fast variational Bayesian signa	al recovery in the presence of Poisson-O	Gaussian Noise.	7/17

Construction of the majorizing approximations

• MAJORANT FUNCTION OF THE NEG-LOG LIKELIHOOD : Let $\mathbf{w} = (w_i)_{1 \le i \le M} \in [0, +\infty)^M$. Since the function $t \longmapsto \sqrt{t + \delta}$ is concave with a Lipschitz continuous gradient, then $T(\tilde{\mathbf{y}}, \mathbf{x}; \mathbf{w}) = \sum_{i=1}^M T_i(\tilde{y}_i, [\mathbf{Hx}]_i; w_i)$ where, for every $i \in \{1, ..., M\}$,

$$T_{i}(\tilde{y}_{i}, [\mathbf{H}\mathbf{x}]_{i}; w_{i}) = \frac{1}{2}\tilde{y}_{i}^{2} + 2([\mathbf{H}\mathbf{x}]_{i} + \delta) - 2\tilde{y}_{i}\sqrt{w_{i} + \delta}$$
$$- \tilde{y}_{i}(w_{i} + \delta)^{-\frac{1}{2}}([\mathbf{H}\mathbf{x}]_{i} - w_{i})$$
$$+ \frac{1}{4}\delta^{-\frac{3}{2}}\tilde{y}_{i}([\mathbf{H}\mathbf{x}]_{i} - w_{i})^{2}.$$

is a majorant of $-\log p(\tilde{\mathbf{y}} \mid \mathbf{x})$.

Introduction	Proposed method	Simulations	Conclusion
0000	0000000	000	0
Fast variational Bayesian s	ignal recovery in the presence of Poisson-O	Gaussian Noise.	8/17

Construction of the majorizing approximations

• MAJORANT FUNCTION OF THE NEG-LOG PRIOR OF \mathbf{x} : Let $\boldsymbol{\lambda} = (\lambda_j)_{1 \le j \le Q} \in [0, +\infty)^Q$. Using the following inequality:

 $(\forall v \ge 0)(\forall v > 0) \quad v^{\kappa} \le (1 - \kappa)v^{\kappa} + \kappa v^{\kappa - 1}v,$

then
$$Q(\mathbf{x}, \gamma; \boldsymbol{\lambda}) = \sum_{j=1}^{Q} Q_j(\mathbf{D}_j \mathbf{x}, \gamma; \lambda_j)$$
 where for every $j \in \{1, \dots, Q\}$,

$$(\forall j \in \{1,\ldots,Q\}) \quad Q_j(\mathbf{D}_j\mathbf{x},\gamma;\lambda_j) = \gamma \frac{\kappa \|\mathbf{D}_j\mathbf{x}\|^2 + (1-\kappa)\lambda_j}{\lambda_j^{1-\kappa}}.$$

is a majorant of $-\log p(\mathbf{x})$.

Introduction	Proposed method	Simulations	Conclusion
0000	0000000	000	0
Fast variational Bayesian s	ignal recovery in the presence of Poisson-O	Gaussian Noise.	9/17

Construction of the majorizing approximations

Let

$$L(\boldsymbol{\Theta}|\tilde{\mathbf{y}};\mathbf{w},\boldsymbol{\lambda}) = C(\tilde{\mathbf{y}}) \exp\left[-T(\tilde{\mathbf{y}},\mathbf{x};\mathbf{w}) - Q(\mathbf{x},\gamma;\boldsymbol{\lambda})\right] p(\gamma)$$

where $C(\tilde{\mathbf{y}}) = p(\tilde{\mathbf{y}})^{-1} (2\pi)^{-M/2} \tau \gamma^{\frac{N}{2\kappa}}$

Then

- $p(\Theta \mid \tilde{y}) \ge L(\Theta \mid \tilde{y}; w, \lambda)$
- $\blacktriangleright \ \mathcal{KL}(q(\boldsymbol{\Theta}) \| p(\boldsymbol{\Theta} \mid \tilde{\mathbf{y}})) \leq \mathcal{KL}(q(\boldsymbol{\Theta}) \| L(\boldsymbol{\Theta} | \tilde{\mathbf{y}}; \mathbf{w}, \boldsymbol{\lambda}))$

Introduction	Proposed method	Simulations	Conclusion
0000	00000000	000	0
Fast variational Bayesian signa	recovery in the presence of Poisson-	Gaussian Noise.	10/17

To recap...

Let $\Theta(\mathbf{x},\gamma)$, $q(\Theta) = q(\mathbf{x})q(\gamma)$

OPTIMIZATION PROBLEM:

$$q(\mathbf{\Theta}) = \underset{q}{\operatorname{argmin}} \mathcal{KL}(q(\mathbf{\Theta}) \| p(\mathbf{\Theta} \mid \tilde{\mathbf{y}})) \quad (1)$$

MAJORATION: $\mathcal{KL}(q(\Theta) || \mathbf{p}(\Theta | \mathbf{\tilde{y}})) \leq \mathcal{KL}(q(\Theta) || L(\Theta | \mathbf{\tilde{y}}; \mathbf{w}, \lambda))$ Then Thus, Problem (1) can be solved by alternating the following steps:

- ► Mimimize $\mathcal{KL}(q(\Theta) || L(\Theta | \tilde{\mathbf{y}}; \mathbf{w}, \lambda))$ w.r.t. $q(\mathbf{x})$,
- ► Update the auxiliary variable w in order to minimize *KL*(q(Θ)||*L*(Θ|ỹ; w, λ)),
- ► Update the auxiliary variable λ in order to minimize KL(q(Θ)||L(Θ|ỹ; w, λ)),
- Mimimize the $\mathcal{KL}(q(\Theta) \| L(\Theta | \tilde{\mathbf{y}}; \mathbf{w}, \lambda))$ w.r.t. $q(\gamma)$.

Introduction	Proposed method	Simulations	Conclusion
0000	00000000	000	0
Fast variational Bayesian signal recovery in the presence of Poisson-Gaussian Noise.			11/17

Updating $q(\mathbf{x})$

$$q^{k+1}(\mathbf{x}) \propto \exp\left(\left\langle \ln L(\mathbf{x}, \gamma, \mathbf{y}; \mathbf{w}^k, \boldsymbol{\lambda}^k) \right\rangle_{q^k(\gamma)}\right)$$
$$\propto \exp\left(\int \ln L(\mathbf{x}, \gamma, \mathbf{y}; \mathbf{w}^k, \boldsymbol{\lambda}^k) q^k(\gamma) d\gamma\right)$$
$$= \mathcal{N}(\mathbf{x}; \boldsymbol{m}_{k+1}, \boldsymbol{\Sigma}_{k+1})$$

$$\begin{cases} \boldsymbol{\Sigma}_{k+1}^{-1} &= \frac{1}{2} \delta^{-\frac{3}{2}} \boldsymbol{\mathsf{H}}^{\top} \operatorname{Diag}(\tilde{\boldsymbol{\mathsf{y}}}) \boldsymbol{\mathsf{H}} + 2 \boldsymbol{\mathsf{E}}_{q^{k}(\gamma)} \boldsymbol{\mathsf{D}}^{\top} \boldsymbol{\mathsf{\Lambda}}^{k} \boldsymbol{\mathsf{D}}, \\ \boldsymbol{\mathsf{m}}_{k+1} &= \boldsymbol{\mathsf{\Sigma}}_{k+1} \boldsymbol{\mathsf{H}}^{\top} \boldsymbol{\mathsf{u}}, \end{cases}$$
(1)

where

•
$$\mathbf{u} = (u_i)_{1 \le i \le M}, \ u_i = \tilde{y}_i (w_i^k + \delta)^{-\frac{1}{2}} + \frac{1}{2} \tilde{y}_i \delta^{-\frac{3}{2}} w_i^k - 2$$

• Λ is the diagonal matrix whose diagonal elements are $\left(\kappa(\lambda_j^k)^{\kappa-1}\mathbf{I}_S\right)_{1\leq j\leq Q}$.

Introduction	Proposed method	Simulations	Conclusion
0000	00000000	000	0
Fast variational Bayesian	signal recovery in the presence of Poisson-G	aussian Noise.	11/17

Updating $q(\mathbf{x})$

$$q^{k+1}(\mathbf{x}) \propto \exp\left(\left\langle \ln L(\mathbf{x}, \gamma, \mathbf{y}; \mathbf{w}^k, \boldsymbol{\lambda}^k) \right\rangle_{q^k(\gamma)}\right)$$
$$\propto \exp\left(\int \ln L(\mathbf{x}, \gamma, \mathbf{y}; \mathbf{w}^k, \boldsymbol{\lambda}^k) q^k(\gamma) d\gamma\right)$$
$$= \mathcal{N}(\mathbf{x}; \boldsymbol{m}_{k+1}, \boldsymbol{\Sigma}_{k+1})$$

$$\begin{cases} \boldsymbol{\Sigma}_{k+1}^{-1} &= \frac{1}{2} \delta^{-\frac{3}{2}} \boldsymbol{\mathsf{H}}^{\top} \operatorname{Diag}(\tilde{\boldsymbol{y}}) \boldsymbol{\mathsf{H}} + 2 \boldsymbol{\mathsf{E}}_{q^{k}(\gamma)} \boldsymbol{\mathsf{D}}^{\top} \boldsymbol{\mathsf{\Lambda}}^{k} \boldsymbol{\mathsf{D}}, \\ \boldsymbol{m}_{k+1} &= \boldsymbol{\Sigma}_{k+1} \boldsymbol{\mathsf{H}}^{\top} \boldsymbol{\mathsf{u}}, \end{cases}$$
(1)

IMPLEMENTATION ISSUES:

- Σ_{k+1} is approximated by a diagonal matrix
- \boldsymbol{m}_{k+1} is approximated iteratively using conjugate gradient

Introduction	Proposed method	Simulations	Conclusion
0000	00000000	000	0
Fast variational Bayesian signal re	ecovery in the presence of Poisson	-Gaussian Noise.	12/17

Updating w and λ

$$\boldsymbol{w}^{k+1} = \underset{\mathbf{w}}{\operatorname{argmin}} \mathcal{KL}(q^{k+1}(\mathbf{x})q^{k}(\gamma) \| L(\boldsymbol{\Theta} | \tilde{\mathbf{y}}; \mathbf{w}^{k+1}, \boldsymbol{\lambda}))$$
$$= \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{M} T_{i}(\tilde{y}_{i}, [\mathbf{H}\boldsymbol{m}_{k+1}]_{i}; w_{i}),$$
$$= \max\{[\mathbf{H}\boldsymbol{m}_{k+1}]_{i}, 0\}$$

$$\begin{split} \lambda_j^{k+1} &= \underset{\lambda_j \in [0, +\infty)}{\operatorname{argmin}} \mathcal{KL}(q^{k+1}(\mathbf{x})q^k(\gamma) \| \mathcal{L}(\boldsymbol{\Theta} | \mathbf{\tilde{y}}; \mathbf{w}^{k+1}, \boldsymbol{\lambda})). \\ &= \mathsf{E}_{q^{k+1}(\mathbf{x})} \left[\| \mathbf{D}_j \mathbf{x} \|^2 \right] \\ &= \| \mathbf{D}_j \mathbf{m}_{k+1} \|^2 + \operatorname{trace} \left[\mathbf{D}_j^\top \mathbf{D}_j \mathbf{\Sigma}_{k+1} \right] \end{split}$$

Introduction	Proposed method	Simulations	Conclusion
0000	0000000	000	0
Fast variational Bayesian	signal recovery in the presence of Poisson-O	Gaussian Noise.	13/17

Updating $q(\gamma)$

$$q^{k+1}(\gamma) \propto \exp\left(\left\langle \ln L(\mathbf{x}, \gamma, \mathbf{y}; \mathbf{w}^{k+1}, \boldsymbol{\lambda}^{k+1}) \right\rangle_{q^{k+1}(\mathbf{x})} \right)$$
$$\propto \exp\left(\int \ln L(\mathbf{x}, \gamma, \mathbf{y}; \mathbf{w}^{k+1}, \boldsymbol{\lambda}^{k+1}) q^{k+1}(\mathbf{x}) d\mathbf{x} \right)$$
$$= \mathcal{G}(\gamma; \mathbf{a}_{k+1}, \mathbf{b}_{k+1})$$
$$\left\{ \begin{array}{l} \mathbf{a}_{k+1} = \frac{N}{2\kappa} + \alpha = \mathbf{a}, \\ \mathbf{b}_{k+1} = \sum_{j=1}^{Q} (\lambda_j^{k+1})^{\kappa} + \beta, \end{array} \right.$$

Introduction	Proposed method	Simulations	Conclusion
0000	0000000	•00	0
Fast variational Bayesian s	signal recovery in the presence of Poisson-	Gaussian Noise.	14/17

Experiments

- Different count levels x_{max}
- Comparison with variationnal approaches:
 - different PG likelihood approximations: Generalized Anscombe Transform (GAST), the Exponential likelihood (Exp), the Exact likelehood (Exact)
 - different optimization algorithms: Spectral projected gradient [Bajic et al. 1994], Primal-dual splitting algorithm [Chouzenoux et al. 2015]

Introduction	Proposed method	Simulations	Conclusion
0000	0000000	000	0
Fast variational Bayesian	signal recovery in the presence of Poisson-	Gaussian Noise.	15/17

Visual results

From top to bottom: Original images: $x_{max} = (20, 60, 100, 150)$. Degraded images: SSIM=(0.232, 0.423, 0.561, 0.586). Restored images with the proposed approach: SSIM=(0.575, 0.653, 0.765, 0.830).

Introduction	Proposed method	Simulations	Conclusion
0000	0000000	000	0
Fast variational Bayesian sig	nal recovery in the presence of Poisson-(Gaussian Noise.	16/17

Comparison with variational methods

		MAP (GAST) [PG]	MAP (GAST) [PD]	MAP(EXP) [PD]	MAP (Exact)[PD]	BV (GAST)
	γ	fixed	fixed	fixed	fixed	automatic
First image (350 \times 350): $x_{max} = 20$	SNR	13.61	13.60	13.72	13.73	13.80
h: Uniform 5 × 5, $\sigma^2 = 9$	Time (s.)	2897	490	3124	48587	29
	γ	fixed	fixed	fixed	fixed	automatic
Second image (257 \times 256): $x_{max} = 60$	SNR	15.35	15.33	15.42	15.43	15.22
h: Gaussian 9 × 9, std 0.5, $\sigma^2 = 36$	Time (s.)	3168	86	112	612	7
	γ	fixed	fixed	fixed	fixed	automatic
Third image (256 \times 256): $x_{max} = 100$	SNR	13.71	13.77	13.81	13.81	14.17
h: Uniform 3×3 , $\sigma^2 = 36$	Time (s.)	2921	578	1060	17027	9
	γ	fixed	fixed	fixed	fixed	automatic
Fourth image (256 \times 256): $x_{max} = 150$	SNR	20.17	20.11	20.11	20.33	20.43
h: Gaussian 7 × 7, std 1, $\sigma^2 = 40$	Time (s.)	2964	886	3026	43397	14

PG: projected gradient algorithm PD: primal dual algorithm Simulations performed on an Intel(R) Xeon(R) CPU E5-2630, @ 2.40 GHz, using a Matlab 7 implementation

- Comparable quantitative results with variational approaches
- Regularization parameter automatically tunned
- Competitive computation time

Introduction	Proposed method	Simulations	Conclusion
0000	0000000	000	•
Fast variational Bayesian	signal recovery in the presence of Poisson-	Gaussian Noise.	17/17
Fast variational Bayesian	signal recovery in the presence of Poisson-	Gaussian Noise.	17/17

In a nutshell...

- ✓ Variational Bayesian method for restoration of images corrupted with mixed Poisson Gaussian noise
- → Compared to variational approaches, the proposed method shows:
 - \checkmark good quantitative and qualitative results
 - $\checkmark~$ competitive computation time
- → Future work: extension to other PG likelihood approximations and others prior distributions