Fast Partitioning for VVC Intra-Picture Encoding With a CNN Minimizing the Rate-Distortion-Time Cost Gerhard Tech, Jonathan Pfaff, Heiko Schwarz, Philipp Helle, Adam Wieckowski, Detlev Marpe, and Thomas Wiegand

Introduction

Versatile Video Coding (VVC)

New coding tools e.g. for intra-picture coding:

multi-type tree (MTT), intra sub-block partitions (ISP), matrix-based intra prediction (MIP), extended number of directional modes, multi-reference line (MRL), low-frequency non-separable transform (LFNST), multiple transform select (MTS) ...

Introduction

Versatile Video Coding (VVC)

New coding tools e.g. for intra-picture coding:

multi-type tree (MTT), intra sub-block partitions (ISP), matrix-based intra prediction (MIP), extended number of directional modes, multi-reference line (MRL), low-frequency non-separable transform (LFNST), multiple transform select (MTS) ...

Introduction

Versatile Video Coding (VVC)

New coding tools e.g. for intra-picture coding:

multi-type tree (MTT), intra sub-block partitions (ISP), matrix-based intra prediction (MIP), extended number of directional modes, multi-reference line (MRL), low-frequency non-separable transform (LFNST), multiple transform select (MTS) ...

Introduction

- Versatile Video Coding (VVC)
 - New coding tools e.g. for intra-picture coding:

multi-type tree (MTT), intra sub-block partitions (ISP), matrix-based intra prediction (MIP), extended number of directional modes, multi-reference line (MRL), low-frequency non-separable transform (LFNST), multiple transform select (MTS) ...

Motivation

Versatile Video Coding (VVC)

New coding tools e.g. for intra-picture coding:

multi-type tree (MTT), intra sub-block partitions (ISP), matrix-based intra prediction (MIP), extended number of directional modes, multi-reference line (MRL), low-frequency non-separable transform (LFNST), multiple transform select (MTS) ...

- 50% bit rate reduction compared to HEVC
- Requirement: Encoder selects efficient coding modes
 - Rate-distortion optimization (RDO)
 - Encode a block *B* with different partitioning, prediction, and transform mode combinations
 - Select the modes providing the minimal Lagrangian rate-distortion (RD) cost
 - Problem: Limited encoding time; not all combinations can be tested
 - → Some modes must be skipped without testing

Introduction

Versatile Video Coding (VVC)

New coding tools e.g. for intra-picture coding:

multi-type tree (MTT), intra sub-block partitions (ISP), matrix-based intra prediction (MIP), extended number of directional modes, multi-reference line (MRL), low-frequency non-separable transform (LFNST), multiple transform select (MTS) ...

- 50% bit rate reduction compared to HEVC
- Requirement: Encoder selects efficient coding modes
 - Rate-distortion optimization (RDO)
 - Encode a block *B* with different partitioning, prediction, and transform mode combinations
 - Select the modes providing the minimal Lagrangian rate-distortion (RD) cost
 - Problem: Limited encoding time; not all combinations can be tested
 - → Some modes must be skipped without testing
- Which modes should the encoder skip?
 - Optimally: Reduce encoding time, while not increasing the RD cost
 - → Subject of this presentation: Doing this by skipping MTT partitioning modes

- How can the the partitioning be restricted?
 - VVC partitioning
 - Parameters

- How can the the partitioning be restricted?
 - VVC partitioning
 - Parameters
- How can the parameters be selected optimally?
 - Theoretical background

- How can the the partitioning be restricted?
 - VVC partitioning
 - Parameters
- How can the parameters be selected optimally?
 - Theoretical background
- How to estimate the optimal parameters practically?
 - CNN
 - Training data generation
 - Loss function in training

- How can the the partitioning be restricted?
 - VVC partitioning
 - Parameters
- How can the parameters be selected optimally?
 - Theoretical background
- How to estimate the optimal parameters practically?
 - CNN
 - Training data generation
 - Loss function in training
- How do the estimated parameters perform in encoding?
 - Evaluation

- How can the the partitioning be restricted?
 - VVC partitioning
 - Parameters
- How can the parameters be selected optimally?
 - Theoretical background
- How to estimate the optimal parameters practically?
 - CNN
 - Training data generation
 - Loss function in training
- How do the estimated parameters perform in encoding?
 - Evaluation
- Summary and Conclusion

Partitioning Restrictions

Combined quad and a multi-type tree

- Combined quad and a multi-type tree
- Quad tree:
 - Quad splits
 - Recursively

- Combined quad and a multi-type tree
- Quad tree:
 - Quad splits
 - Recursively

	Combined	quad	and	а	multi-type	tree
--	----------	------	-----	---	------------	------

- Quad tree:
 - Quad splits
 - Recursively

- Combined quad and a multi-type tree
- Quad tree:
 - Quad splits
 - Recursively

- Combined quad and a multi-type tree
- Quad tree:
 - Quad splits
 - Recursively
- Multi-type tree
 - Can start at Qt leaf nodes
 - Directional splits:

- Combined quad and a multi-type tree
- Quad tree:
 - Quad splits
 - Recursively
- Multi-type tree
 - Can start at Qt leaf nodes
 - Directional splits:
 - Horizontal binary

- Combined quad and a multi-type tree
- Quad tree:
 - Quad splits
 - Recursively
- Multi-type tree
 - Can start at Qt leaf nodes
 - Directional splits:
 - Horizontal ternary

- Combined quad and a multi-type tree
- Quad tree:
 - Quad splits
 - Recursively
- Multi-type tree
 - Can start at Qt leaf nodes
 - Directional splits:
 - Vertical binary

- Combined quad and a multi-type tree
- Quad tree:
 - Quad splits
 - Recursively
- Multi-type tree
 - Can start at Qt leaf nodes
 - Directional splits:
 - Vertical ternary

- Combined quad and a multi-type tree
- Quad tree:
 - Quad splits
 - Recursively
- Multi-type tree
 - Can start at Qt leaf nodes
 - Directional splits:
 - Recursively

- Combined quad and a multi-type tree
- Quad tree:
 - Quad splits
 - Recursively
- Multi-type tree
 - Can start at Qt leaf nodes
 - Directional splits:
 - Recursively

- Combined quad and a multi-type tree
- Quad tree:
 - Quad splits
 - Recursively
- Multi-type tree
 - Can start at Qt leaf nodes
 - Directional splits:
 - Recursively

- Combined quad and a multi-type tree
- Quad tree:
 - Quad splits
 - Recursively
- Multi-type tree
 - Can start at Qt leaf nodes
 - Directional splits:
 - Recursively
- Various options to adapt to the content
 - However: Most options irrelevant

- Combined quad and a multi-type tree
- Quad tree:
 - Quad splits
 - Recursively
- Multi-type tree
 - Can start at Qt leaf nodes
 - Directional splits:
 - Recursively
- Various options to adapt to the content
 - However: Most options irrelevant
- → Idea:
 - Skip partitioning modes based on the block content without testing
 - Introduce parameters controlling which modes are skipped

Idea: Limit the size of tested MTT partitionings

for 32×32 blocks with two parameters

$$\mathbf{P} = \begin{pmatrix} p_H \\ p_V \end{pmatrix}$$

Idea: Limit the size of tested MTT partitionings

for 32×32 blocks with two parameters

$$\mathbf{P} = \begin{pmatrix} p_H \\ p_V \end{pmatrix}$$

- Skip testing an MTT split if any resulting sub-block would have
 - a width less than N_q/2^{p_H} or
 - a height less than $N_q/2^{p_V}$
 - with N_q denoting the size of the MTT's quad-tree leaf node

- Idea: Limit the size of tested MTT partitionings for 32×32 blocks with two parameters $\mathbf{P} = \begin{pmatrix} p_H \\ r \end{pmatrix}$
- Skip testing an MTT split if any resulting sub-block would have
 - a width less than N_q/2^{p_H} or
 - a height less than $N_q/2^{p_V}$
 - with N_q denoting the size of the MTT's quad-tree leaf node

$$\mathbf{P} = \begin{pmatrix} p_H \\ p_V \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

- Idea: Limit the size of tested MTT partitionings for 32×32 blocks with two parameters $\mathbf{P} = \begin{pmatrix} p_H \\ p_{W} \end{pmatrix}$
- Skip testing an MTT split if any resulting sub-block would have
 - \blacksquare a width less than $N_q/2^{p_H}$ or
 - a height less than $N_q/2^{p_V}$
 - with N_q denoting the size of the MTT's quad-tree leaf node

$$\mathbf{P} = \begin{pmatrix} p_H \\ p_V \end{pmatrix} = \begin{pmatrix} \mathbf{1} \\ \mathbf{1} \end{pmatrix}$$

- Idea: Limit the size of tested MTT partitionings for 32×32 blocks with two parameters $\mathbf{P} = \begin{pmatrix} p_H \\ p_{W} \end{pmatrix}$
- Skip testing an MTT split if any resulting sub-block would have
 - \blacksquare a width less than $N_q/2^{p_H}$ or
 - a height less than $N_q/2^{p_V}$
 - with N_q denoting the size of the MTT's quad-tree leaf node

$$\mathbf{P} = \begin{pmatrix} p_H \\ p_V \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

- Idea: Limit the size of tested MTT partitionings for 32×32 blocks with two parameters $\mathbf{P} = \begin{pmatrix} p_H \\ p_V \end{pmatrix}$
- Skip testing an MTT split if any resulting sub-block would have
 - \blacksquare a width less than $N_q/2^{p_H}$ or
 - a height less than $N_q/2^{p_V}$
 - with N_q denoting the size of the MTT's quad-tree leaf node
- Value range: $p_H, p_V \in \{0, 1, 2, 3\}$

- Idea: Limit the size of tested MTT partitionings for 32×32 blocks with two parameters $\mathbf{P} = \begin{pmatrix} p_H \\ p_{W} \end{pmatrix}$
- Skip testing an MTT split if any resulting sub-block would have
 - a width less than N_q/2^{p_H} or
 - a height less than $N_q/2^{p_V}$
 - with N_q denoting the size of the MTT's quad-tree leaf node
- Value range: $p_H, p_V \in \{0, 1, 2, 3\}$

$$\mathbf{P} = \begin{pmatrix} p_H \\ p_V \end{pmatrix} = \begin{pmatrix} \mathbf{3} \\ \mathbf{0} \end{pmatrix}$$

- Idea: Limit the size of tested MTT partitionings for 32×32 blocks with two parameters $\mathbf{P} = \begin{pmatrix} p_H \\ p_{W} \end{pmatrix}$
- Skip testing an MTT split if any resulting sub-block would have
 - \blacksquare a width less than $N_q/2^{p_H}$ or
 - a height less than $N_q/2^{p_V}$
 - with N_q denoting the size of the MTT's quad-tree leaf node
- Value range: $p_H, p_V \in \{0, 1, 2, 3\}$

$$\mathbf{P} = \begin{pmatrix} p_H \\ p_V \end{pmatrix} = \begin{pmatrix} \mathbf{1} \\ \mathbf{2} \end{pmatrix}$$

- Idea: Limit the size of tested MTT partitionings for 32×32 blocks with two parameters $\mathbf{P} = \begin{pmatrix} p_H \\ p_V \end{pmatrix}$
- Skip testing an MTT split if any resulting sub-block would have
 - a width less than N_q/2^{p_H} or
 - a height less than $N_q/2^{p_V}$
 - with N_q denoting the size of the MTT's quad-tree leaf node
- Value range: $p_H, p_V \in \{0, 1, 2, 3\}$

- Idea: Limit the size of tested MTT partitionings for 32×32 blocks with two parameters $\mathbf{P} = \begin{pmatrix} p_H \\ p_{W} \end{pmatrix}$
 - $-\left(p_V\right)$
- Skip testing an MTT split if any resulting sub-block would have
 - a width less than N_q/2^{p_H} or
 - a height less than $N_q/2^{p_V}$
 - with N_q denoting the size of the MTT's quad-tree leaf node
- **Value range:** $p_H, p_V \in \{0, 1, 2, 3\}$
- The parameters to control the size and orientation of tested MTT partitionings
- → Adaptation to block content possible

$$\mathbf{P} = \begin{pmatrix} p_H \\ p_V \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Partitioning Restrictions

How to select P for a block B optimally?

- How to select P for a block B optimally?
- Objective:
 - **Reduce the encoding time** $T(\mathbf{P})$
 - \blacksquare While maintaining the RD performance, i.e. the RD cost $J(\mathbf{P})$

- How to select P for a block B optimally?
- Objective:
 - **Reduce the encoding time** $T(\mathbf{P})$
 - \blacksquare While maintaining the RD performance, i.e. the RD cost $J(\mathbf{P})$
- Theoretically solved—Generalized Lagrangian multipliers:
 - Per block B, select the parameter P that produces the minimal rate-distortion-time cost K:

$$K(\mathbf{P}) = \underbrace{D(\mathbf{P}) + \lambda \cdot R(\mathbf{P})}_{\text{rate-distortion cost } J(\mathbf{P})} + \underbrace{\mu \cdot T(\mathbf{P})}_{\text{time cost}}$$

- **D** distortion; R bits; T encoding time
- λ and μ Lagrange multipliers
- When K(P) is independent for different B, block-wise minimization also minimizes the overall RDT cost

- How to select P for a block B optimally?
- Objective:
 - **Reduce the encoding time** $T(\mathbf{P})$
 - While maintaining the RD performance, i.e. the RD cost $J(\mathbf{P})$
- Theoretically solved—Generalized Lagrangian multipliers:
 - Per block B, select the parameter P that produces the minimal rate-distortion-time cost K:

$$K(\mathbf{P}) = \underbrace{D(\mathbf{P}) + \lambda \cdot R(\mathbf{P})}_{\text{rate-distortion cost } J(\mathbf{P})} + \underbrace{\mu \cdot T(\mathbf{P})}_{\text{time cost}}$$

- D distortion; R bits; T encoding time
- λ and μ Lagrange multipliers
- When K(P) is independent for different B, block-wise minimization also minimizes the overall RDT cost

Basic Idea

- Practical Problem
 - Lagrangian method requires $J(\mathbf{P})$ and $T(\mathbf{P})$ for all parameter combinations \mathbf{P}
 - Not known and testing beforehand makes no sense

Basic Idea

- Practical Problem
 - Lagrangian method requires $J({\bf P})$ and $T({\bf P})$ for all parameter combinations ${\bf P}$
 - Not known and testing beforehand makes no sense
- Solution
 - Use a CNN to derive the parameter P
 - Train the CNN such that P minimize the RDT cost

Basic Idea

- Practical Problem
 - Lagrangian method requires $J({\bf P})$ and $T({\bf P})$ for all parameter combinations ${\bf P}$
 - Not known and testing beforehand makes no sense
- Solution
 - Use a CNN to derive the parameter P
 - Train the CNN such that P minimize the RDT cost
- Training Approach
 - Training data generation:
 - Perform the Lagrangian method
 - Record the occurring RDT-cost
 - In training:
 - Use the stored RDT cost to compute the training loss

Generation of Training Data

- Encode training sequences, for each 32×32 block B:
 - Encode B with all P
 - Store the occurring RDT cost $K(\mathbf{P})$
 - Select \mathbf{P} providing the minimum $K(\mathbf{P})$ and continue based on its encoder state

Generation of Training Data

• Encode training sequences, for each 32×32 block B:

- Encode B with all P
- Store the occurring RDT cost K(P)
- Select \mathbf{P} providing the minimum $K(\mathbf{P})$ and continue based on its encoder state

Generation of Training Data

• Encode training sequences, for each 32×32 block B:

- Encode B with all P
- Store the occurring RDT cost K(P)
- Select \mathbf{P} providing the minimum $K(\mathbf{P})$ and continue based on its encoder state

CNN-based Parameter Estimation

Lagrange parameters:

- $\blacksquare \lambda: encoder default for QP$
- μ : determines encoding time

CNN-based Parameter Estimation

Objective: Minimize the RDT cost of estimated parameters

Objective: Minimize the RDT cost of estimated parameters

Approach

- Interpret the two floating point CNN outputs as p_H and p_V
- Gradient descent method
- Requires derivatives of loss function with respect to p_H and p_V
- → Problem: K sampled at integer values; derivatives do not exist

Objective: Minimize the RDT cost of estimated parameters

Approach

- Interpret the two floating point CNN outputs as p_H and p_V
- Gradient descent method
- Requires derivatives of loss function with respect to p_H and p_V
- → Problem: K sampled at integer values; derivatives do not exist

Solution

Model derivatives using an interpolated loss function

Objective: Minimize the RDT cost of estimated parameters

Approach

- Interpret the two floating point CNN outputs as p_H and p_V
- Gradient descent method
- Requires derivatives of loss function with respect to p_H and p_V
- → Problem: K sampled at integer values; derivatives do not exist

Solution

- Model derivatives using an interpolated loss function
- If $0 \le p_H \le 3$ and $0 \le p_V \le 3$
 - Horizontal and vertical interpolation using cubic hermite B-splines
 - Advantage: shape preserving; produces no local minima

Objective: Minimize the RDT cost of estimated parameters

Approach

- Interpret the two floating point CNN outputs as p_H and p_V
- Gradient descent method
- Requires derivatives of loss function with respect to p_H and p_V
- → Problem: K sampled at integer values; derivatives do not exist

Solution

- Model derivatives using an interpolated loss function
- If $0 \le p_H \le 3$ and $0 \le p_V \le 3$
 - Horizontal and vertical interpolation using cubic hermite B-splines
 - Advantage: shape preserving; produces no local minima

Otherwise

- Artificial gradient pointing away from the sampled area
- Ensures that the gradient descent method converges back

CNN-based Parameter Estimation

CNN-based Parameter Estimation

CNN-based Parameter Estimation

CNN-based Parameter Estimation

- Modifications:
 - Max pooling size changed to input 33×33 instead of 65×65 blocks
 - 2 outputs instead of 480

Conditions

Evaluation

Training

- 24 million training patches
- 22 epochs
- Adam optimizer; Learning rate of 10^{-4} ; mini-batch size of 512

Conditions

Evaluation

Training

- 24 million training patches
- 22 epochs
- Adam optimizer; Learning rate of 10^{-4} ; mini-batch size of 512
- CNNs for 24 test points
 - 6 Encoding time points
 - 4 QPs: 22, 27, 32, and 37
 - An individual μ for each CNN, such that
 - for all QPs of an encoding time point:
 - approximately the same encoding time reduction (in percent)

Conditions

Evaluation

Training

- 24 million training patches
- 22 epochs
- Adam optimizer; Learning rate of 10^{-4} ; mini-batch size of 512
- CNNs for 24 test points
 - 6 Encoding time points
 - 4 QPs: 22, 27, 32, and 37
 - An individual μ for each CNN, such that
 - for all QPs of an encoding time point:
 - approximately the same encoding time reduction (in percent)
- Coding conditions
 - JVET's test conditions for All-Intra Coding
 - CNN run-times included
 - Basis and anchor: VTM-7.0
 - No default optimizations disabled

- 10% encoding time reduction, neglectable BD rate increase
- 50% encoding time reductions, 0.9% BD rate increase
- 73% encoding time reductions, 3.7% BD rate increase

Potential for further improvements, e.g. advanced CNN layouts

- Other: great number of parameters with much finer granularity.
- \blacksquare Our: only estimates two parameters for a $32\!\times\!32$ block

- Advanced loss function
- Can explore the actual RDT cost for the full parameter space offline
- Trades off estimation flexibility against estimation accuracy

CNN-based method for fast VVC intra-picture encoding

- CNN-based method for fast VVC intra-picture encoding
- How can the partitioning be restricted?
 - Two parameters: Defining the minimal width and height of MTT subdivisions
 - → Allow to skip testing blocks based on their size and orientation

- CNN-based method for fast VVC intra-picture encoding
- How can the partitioning be restricted?
 - Two parameters: Defining the minimal width and height of MTT subdivisions
 - → Allow to skip testing blocks based on their size and orientation
- How can the parameters be selected?
 - Lagrangian multiplier method considering the RDT cost
 - → Theoretically optimal solution

- CNN-based method for fast VVC intra-picture encoding
- How can the partitioning be restricted?
 - Two parameters: Defining the minimal width and height of MTT subdivisions
 - → Allow to skip testing blocks based on their size and orientation
- How can the parameters be selected?
 - Lagrangian multiplier method considering the RDT cost
 - → Theoretically optimal solution
- How to approximate the optimal solution practically?
 - CNN with original samples as input
 - Training data generation using the Lagrangian multiplier method
 - Interpolation of the loss function from the recorded data
 - → CNN estimates the optimal parameters

- CNN-based method for fast VVC intra-picture encoding
- How can the partitioning be restricted?
 - Two parameters: Defining the minimal width and height of MTT subdivisions
 - → Allow to skip testing blocks based on their size and orientation
- How can the parameters be selected?
 - Lagrangian multiplier method considering the RDT cost
 - → Theoretically optimal solution
- How to approximate the optimal solution practically?
 - CNN with original samples as input
 - Training data generation using the Lagrangian multiplier method
 - Interpolation of the loss function from the recorded data
 - → CNN estimates the optimal parameters
- Conclusions
 - We outperform other methods although using only two parameters for large blocks
 - → Our loss function models the RDT cost accurately
 - → Might be better to optimize fewer parameters, but with an exact loss function

Thank you for your attention!

- Any questions?
- → gerhard.tech@hhi.fraunhofer.de

