

Self-Attentive Network for Time-Domain Speech Separation

Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu

Tencent AI Lab

ICASSP 2021

Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu

Sandglasset: A Light Multi-Granularity Self-Attentive Network for Time-Domain Speech Separation

Sandglasset	Conclusion

Outline of This Presentation

1 Introduction

2 Sandglasset

3 Evaluation

Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu

Introduction	Sandglasset	Conclusion
0000		

Next Section...

1 Introduction

2 Sandglasset

3 Evaluation

4 Conclusion

Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu

Sandglasset: A Light Multi-Granularity Self-Attentive Network for Time-Domain Speech Separation

Tencent AI Lab

< □ > < 同

 Introduction
 Sandglasset
 Evaluation
 Conclusion

 0●00
 00000000
 0000
 00

Single-Channel Speech Separation

- Speech separation is a fundamental component for many downstream speech processing tasks.
- Single-channel speech separation has recently been advanced by the time-domain audio separation networks (TasNets) (Luo and Mesgarani, 2018).

< D > < A > < B >

Tencent ALLah

- Recent development of TasNets:
 - **1** Bi-LSTM TasNet (Luo and Mesgarani, 2018)
 - 2 Conv-TasNet (Luo and Mesgarani, 2019)
 - 3 DPRNN (Luo, Z. Chen, and Yoshioka, 2019)
 - 4 DPTNet (J. Chen, Mao, and Liu, 2020)
 - 5 Gated DPRNN (Nachmani, Adi, and Wolf, 2020)
 - 6 Wavesplit (Zeghidour and Grangier, 2020)
 - **7** GALR (Lam et al., 2021)

Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu

Introduction	Sandglasset	Conclusion
0000		

State-of-the-art Speech Separation Models

- State-of-the-art (SOTA) models both employ a dual-path technique, which is to process the segment sequence in an intra-segment (local) direction and an inter-segment (global) direction alternatively.
- In our previous work of GALR, we found that self-attentive networks (SANs) are superior over RNNs in modeling the intersegment sequence.
- SAN can connect every element to another element with a direct path (i.e., in $\mathcal{O}(1)$ time), in contrast to $\mathcal{O}(N)$ time in RNNs.

• • • • • • • • • • • •

Tencent ALLah

Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu

Introduction	Sandglasset	Conclusion
0000		

Essence of Multi-Granularity

- Existing Method: Use a fixed segment size unchanged throughout all layers.
- **Fact**: Speech signals contain different level of contexts, e.g., phonemes, syllables, or words, at different time scales.
- Our Observation: SANs have superior capabilities in modeling sequences of high-level contexts, as examined in LM and in NLP.
- Our Idea: Design a novel network that allows SANs to capture multi-granularity information for enhancing contextual modeling and computational efficiency.
- **Our Proposed:** Sandglasset, named for its sandglass shape and its modest model size and complexity.

< < >> < <</>

Sandglasset	Conclusion
0000000	

Next Section...

1 Introduction

2 Sandglasset

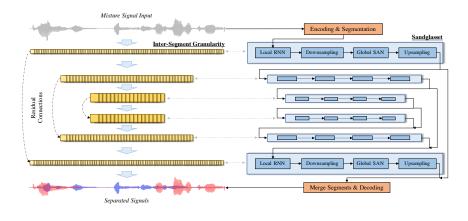
3 Evaluation

4 Conclusion

Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu

Introduction	Sandglasset	Evaluation	Conclusion
0000	0●0000000	0000	00

Overall Architecture

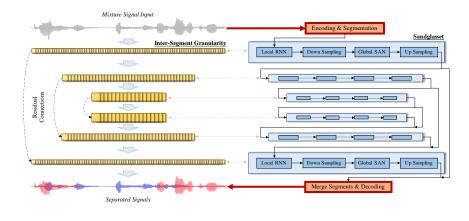


Tencent AI Lab

Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu

Sandglasset	Conclusion
0000000	

Encoding, Segmentation, Overlapadd & Decoding



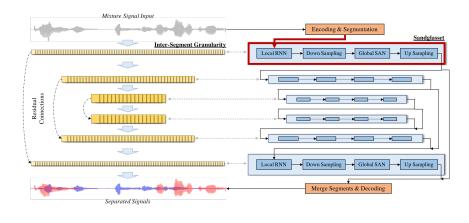
< 口 > < 同 >

Tencent AI Lab

Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu

Sandglasset	Conclusion
0000000	

Sandglasset Block



< 口 > < 同 >

Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu

Sandglasset: A Light Multi-Granularity Self-Attentive Network for Time-Domain Speech Separation

Sandglasset	Conclusion
00000000	

Modules within a Sandglasset block

- Each Sandglasset block consists of these modules:
 - A local RNN for processing the intra-segment sequence and modeling locality;
 - 2 A global SAN for processing the inter-segment sequence and to capture the global dependencies.
 - 3 A downsampling and an upsampling modules surrounding the global SAN for changing the context granularity.

イロト イボト イヨト イヨト

Tencent ALLah

For the *b*-th block, $\mathcal{X}_b \in \mathbb{R}^{D \times K \times S}$ is the block input enclosing *S* segments each containing *K*-length *D*-dimensional features.

Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu

Sandglasset	Conclusion
00000000	

Computations within a Sandglasset block

Mathematically, a Sandglasset block computes the following:

$$\mathcal{Y}_{b}^{LR} = \left[\text{Linear} \left(\text{RNN}_{b} \left(\mathcal{X}_{b} [:,:,s] \right) \right), s = 1, ..., S \right], \tag{1}$$

$$\mathcal{Y}_{b}^{GA} = \mathsf{US}_{b}\left(\mathsf{SAN}_{b}\left(\mathsf{DS}_{b}\left(\mathsf{LN}\left(\mathcal{Y}_{b}^{LR}\right) + \mathcal{X}_{b}\right)\right)\right),\tag{2}$$

イロト イボト イヨト イヨト

Tencent ALLah

where

$$SAN(\mathcal{X}) = [SelfAttn(LN(\mathcal{X}[:,k,:]) + P), k = 1,...,K], \quad (3)$$

Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu

Sandglasset	Conclusion
00000000	

Downsampling and Upsampling Operations

The downsampling and upsampling operations are defined as

$$DS_{b}(\mathcal{X}) = \begin{cases} Conv1D_{K}(\mathcal{X}; 4^{b}) & \text{if } b \leq N/2; \\ Conv1D_{K}(\mathcal{X}; 4^{N-b-1}) & \text{if } b > N/2. \end{cases}$$
(4)
$$US_{b}(\mathcal{X}) = \begin{cases} ConvTrans1D_{K}(\mathcal{X}; 4^{b}) & \text{if } b \leq N/2; \\ ConvTrans1D_{K}(\mathcal{X}; 4^{N-b-1}) & \text{if } b > N/2, \end{cases}$$
(5)

where

$$\operatorname{Conv1D}_{\mathcal{K}}(\mathcal{X};\tau) \in \mathbb{R}^{D \times \lceil \mathcal{K}/\tau \rceil \times S}$$
(6)

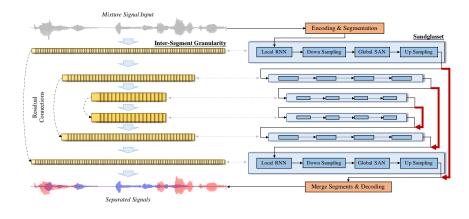
$$ConvTrans1D_{\mathcal{K}}(\mathcal{X};\tau) \in \mathbb{R}^{D \times \mathcal{K}\tau \times S}$$
(7)

Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu

Sandglasset: A Light Multi-Granularity Self-Attentive Network for Time-Domain Speech Separation

Sandglasset	Conclusion
000000000	

Residual Connections to Prevent Information Loss



Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu

Sandglasset: A Light Multi-Granularity Self-Attentive Network for Time-Domain Speech Separation

Tencent AI Lab

< 口 > < 同 >

 ntroduction
 Sandglasset
 Evaluation
 Conclusion

 0000
 0000000●
 0000
 00

Residual Connections to Prevent Information Loss

- One highlight of our work is to add residual connections between pairs of Sandglasset blocks that are of the same granularity.
- Skip connections are useful to prevent information loss after passing through the middle blocks, where the granularity is at the coarsest scale.
- Mathematically, we define

$$\mathcal{X}_{b+1}^{LR} = \begin{cases} \mathcal{Y}_b^{GA} & \text{if } b \le N/2; \\ \mathcal{Y}_b^{GA} + \mathcal{Y}_{N-b+1}^{GA} & \text{if } b > N/2. \end{cases}$$
(8)

Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu

Sandglasset: A Light Multi-Granularity Self-Attentive Network for Time-Domain Speech Separation

Sandglasset	Evaluation	Conclusion
	0000	

Next Section...

1 Introduction

2 Sandglasset

3 Evaluation

4 Conclusion

Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu

Sandglasset: A Light Multi-Granularity Self-Attentive Network for Time-Domain Speech Separation

Tencent AI Lab

< □ > < 同

Sandglasset

Evaluation 0000

A D > <
 A P >
 A

Performances on WSJ0-2mix

Model	Params.	SI-SNRi	SDRi
BLSTM-TasNet	23.6M	13.2	13.6
Conv-TasNet	8.8M	15.3	15.6
DPRNN	2.6M	18.8	19.1
DPTNet	2.7M	20.2	20.6
Sandglasset (w/o RES)	2.3M	20.1	20.3
Sandglasset (SG)	2.3M	20.3	20.5
Sandglasset (MG)	2.3M	20.8	21.0
Sandglasset (MG) + PT	2.3M	21.0	21.2
Gated DPRNN + Spk ID	7.5M	20.1	-
Wavesplit + Spk ID	[†] 42.5M	21.0	21.2

Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu

Sandglasset: A Light Multi-Granularity Self-Attentive Network for Time-Domain Speech Separation

Sandglasset

Evaluation 00●0

A D > <
 A P >
 A

Performance on WSJ0-3mix

Model	Params.	SI-SNRi	SDRi
Conv-TasNet	8.8M	12.7	13.1
DPRNN	2.6M	14.7	-
Sandglasset (MG)	2.3M	17.1	17.4
Gated DPRNN + Spk ID	7.5M	16.7	-
Wavesplit + Spk ID	[†] 42.5M	17.3	17.6

Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu

Sandglasset: A Light Multi-Granularity Self-Attentive Network for Time-Domain Speech Separation

Introduction	Sandglasset	Evaluation	Conclusion
0000	00000000	000●	00

Cost Analysis

Model	Params.	Memory (GB)	GFLOPs (10^9)
DPRNN	2.6M	1.97	84.7
Sandglasset	2.3M	0.82 (↓58.4%)	28.8 (↓66.0%)

- We measured the runtime memory and the floating-point operations (FLOPs) for processing each second of mixture input during training.
- We compared it to the SOTA model that is comparable in size – DPRNN.

Tencent ALLah

Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu

Introduction	Sandglasset	Evaluation	Conclusion
0000	00000000	0000	●○

Next Section...

1 Introduction

2 Sandglasset

3 Evaluation

4 Conclusion

Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu

Introduction	Sandglasset	Evaluation	Conclusion
0000	00000000	0000	○●

Conclusion

- To conclude, this paper proposes a novel network named Sandglasset for time-domain speech separation.
- Sandglasset applies a downsampling-upsampling mechanism to the global SAN for modeling multi-granularity contexts.
- As the smallest TasNet in size, Sandglasset achieved the state-of-the-art results on two benchmark datasets.
- Sandglasset is also low-cost in terms of memory and computations, which suggests it a more practical model for industrial deployment.