Learning to Select Context in a Hierarchical and Global Perspective for

Lei Shen^{1,2,*}, Haolan Zhan^{2,*}, Xin Shen³, Yang Feng^{1,2},

¹Institute of Computing Technology, Chinese Academy of Sciences

²University of Chinese Academy of Sciences, ³Australian National University

ID: 2518

Introduction

Background

Open-domain multi-turn conversations mainly have three features, which are hierarchical semantic structure, redundant information, and long-term dependency. Grounded on these, selecting relevant context becomes a challenge step for multiturn dialogue generation. However, existing methods cannot differentiate both useful words and utterances in long distances from a response. Besides, previous work just performs context selection based on a state in the decoder, which lacks a global guidance and could lead some focuses on irrelevant or unnecessary information. In this paper, we propose a novel model with hierarchical self-attention mechanism and distant supervision to not only detect relevant words and utterances in short and long distances, but also discern related information globally when decoding. Experimental results on two public datasets of both automatic and human evaluations show that our model significantly outperforms other baselines in terms of fluency, coherence, and informativeness.

Example 1									
Utterance 1 你好,送的卡物流怎么查呢? (Hello, how to									
query the logistics information of gift cards?)									
Utterance 2	体验卡对吗? (The trial cards, right?)								
Utterance 3	对。 (Yes.)								
Response	您可以关注下微信公众号"卡助手", 公众号内								
	可以查询哦。 (Please follow the official account								
"Card Assistant" in WeChat, and then you can query									
it inside.)									
	it inside.)								
	it inside.) Example 2								
Utterance 1									
Utterance 1 Utterance 2	Example 2								
	Example 2 有人吗? (Hello, anybody here?)								
	Example 2 有人吗? (Hello, anybody here?) 亲,有什么问题我可以帮您处理或解决呢? (Dear,								
Utterance 2	Example 2 有人吗? (Hello, anybody here?) 亲,有什么问题我可以帮您处理或解决呢? (Dear, what can I do for you?)								
Utterance 2	Example 2 有人吗? (Hello, anybody here?) 亲,有什么问题我可以帮您处理或解决呢? (Dear, what can I do for you?) 我这个订单有保险吗,帮我查一下。 (Is my order								

Table 1: A motivation case.

Method

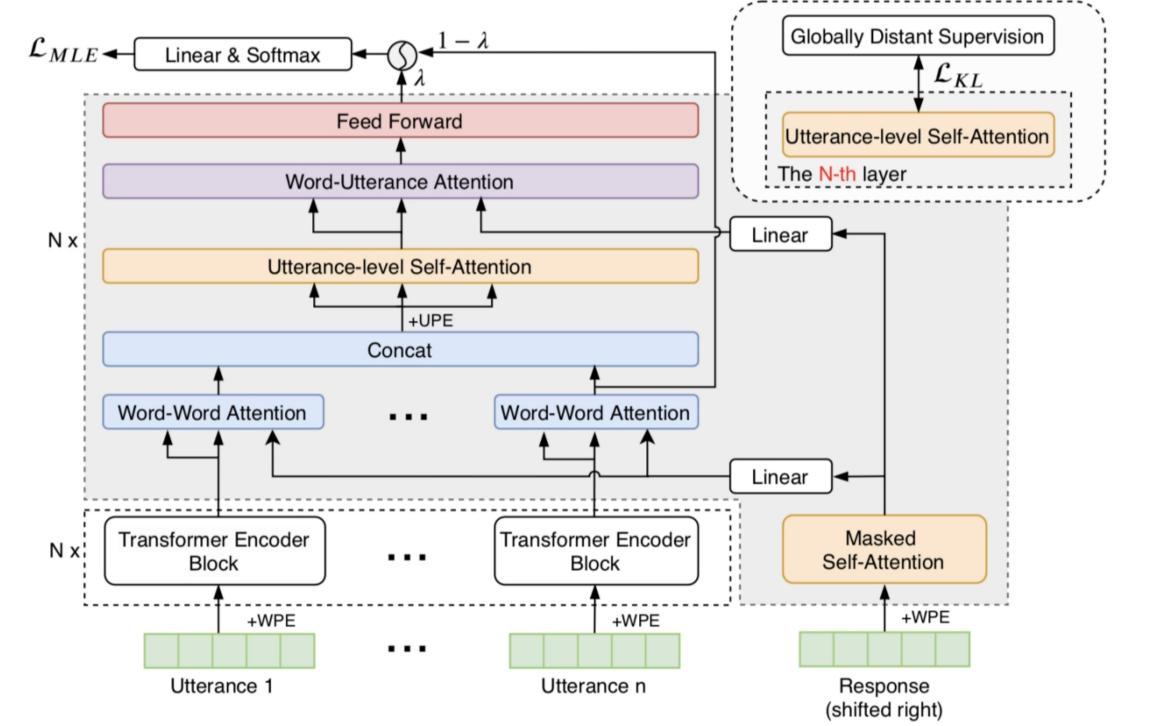


Figure 1: Architecture of our proposed model - HiSA-GDS.

Experiments - Case Study

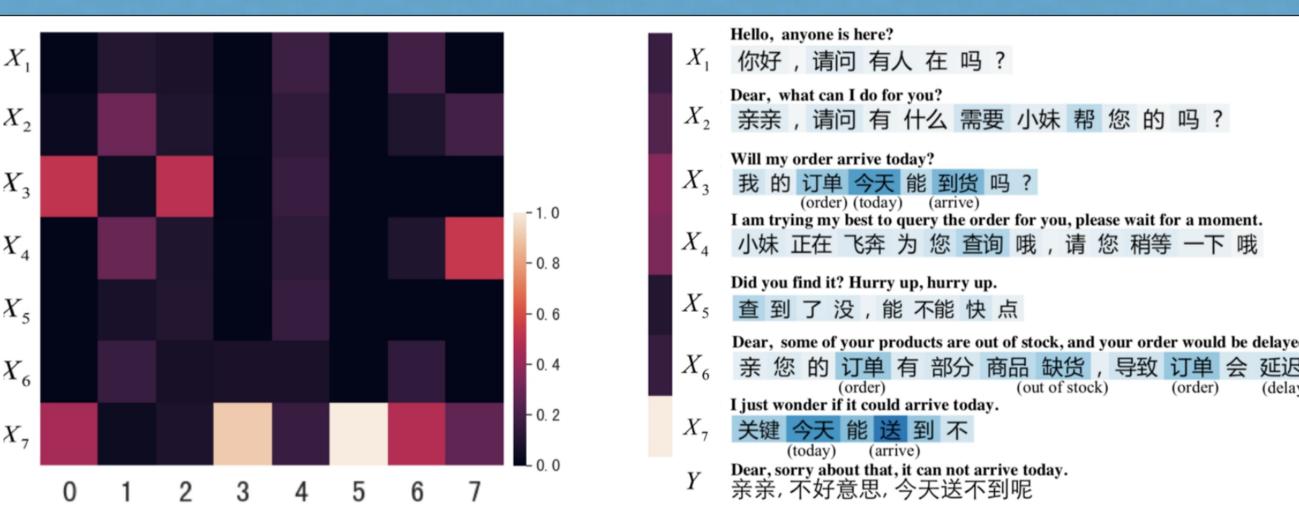


Figure 2: Left: Utterance-level multi-head attention visualization of HiSA-GDS in the word-utterance attention layer. 0 to 7 are the index of each head. Right: Word-level attention visualization in the word-word attention layer.

Conclusion

In this paper, we propose a novel model for open-domain dialogue generation, HiSA-GDS, which conducts context selection in a hierarchical and global perspective. The hierarchical self-attention is introduced to capture relevant context at both word and utterance levels. We also design a globally distant supervision module to guide the response generation at decoding. Experiments show that HiSA-GDS can generate more fluent, coherent, and informative responses.

Motivation & Key Idea

Motivation

To enpower dialogue generation model not only to detect relevant words and utterances in short and long distances, but also to discern related information globally when decoding.

Key ideas

- We propose **HiSA-GDS**, a modified Transformer model with Hierarchical Self-Attention and Globally Distant Supervision.
- Experimental results on two public datasets along with further discussions show that HiSA-GDS significantly outperforms other baselines and is capable to generate more fluent, coherent, and informative responses.

Experiments - Evaluation

Comparison

·													
Model	Ubuntu						JDDC						
Model	B-2	D-2	Avg	Ext	Gre	Coh	B-2	D-2	Avg	Ext	Gre	Coh	
S2SA [16]	0.896	6.104	46.323	28.851	39.209	48.117	4.233	3.609	53.901	36.493	37.578	46.176	
HRED [1]	3.853	6.661	57.972	34.007	41.462	63.173	9.405	11.762	63.191	46.714	43.295	57.183	
VHRED [17]	3.677	8.098	57.251	32.024	41.808	61.464	6.367	15.184	62.436	43.337	41.787	63.924	
Static [4]	1.581	3.586	51.055	36.193	53.983	69.748	2.285	3.738	60.820	38.047	35.367	65.938	
HRAN [18]	3.880	7.402	56.763	33.501	41.584	67.635	5.962	16.365	63.064	43.439	42.389	62.391	
Transformer [10]	3.697	7.278	53.463	36.353	42.763	69.970	5.389	5.185	68.336	48.284	41.103	67.485	
ReCoSa [6]	3.872	9.406	59.368	35.834	41.835	71.922	5.962	6.594	61.085	41.473	42.942	71.374	
HiSA	4.021	9.598	63.527	36.208	40.598	72.261	6.986	14.804	66.103	43.715	45.081	73.286	
HiSA-GDS	7.351	10.934	68.283	41.468	50.382	75.823	7.127	15.823	73.952	52.502	49.477	74.281	

Table 2: Automatic evaluation results on Ubuntu and JDDC (%). The metrics BLEU-2, Distinct-2, Average, Extrema, Greedy and Coherence are abbreviated as B-2, D-2, Avg, Ext, Gre, and Coh, respectively.

Dataset	Model	HiS	kanna		
Dataset	Model	Win	Loss	Tie	kappa
	S2SA [16]	58%	12%	30%	0.468
	HRED [1]	46%	19%	35%	0.531
	VHRED [17]	48%	20%	32%	0.493
Ubuntu	Static [4]	51%	17%	32%	0.596
	HRAN [18]	42%	9%	49%	0.424
	Transformer [10]	44%	19%	37%	0.474
	ReCoSa [6]	40%	6%	54%	0.528
	S2SA [16]	53%	24%	23%	0.547
	HRED [1]	56%	16%	34%	0.468
	VHRED [17]	52%	19%	29%	0.453
JDDC	Static [4]	48%	11%	41%	0.518
	HRAN [18]	50%	22%	28%	0.495
	Transformer [10]	51%	29%	20%	0.447
	ReCoSa [6]	45%	27%	28%	0.461

Table 3: Human evaluation between HiSA-GDS and other baselines.