# Resolution Limits of 20 Questions Search Strategies for Moving Targets

# Alfred O. Hero (University of Michigan, Ann Arbor)

Joint work with Lin Zhou (Beihang University)









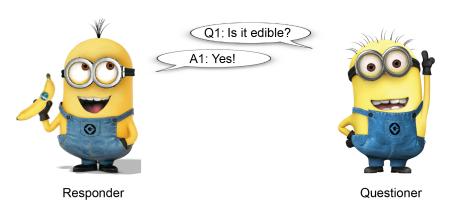
Jun. 9, 2021



Responder

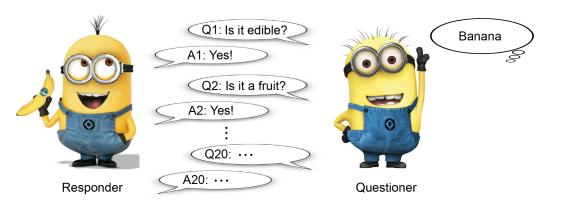


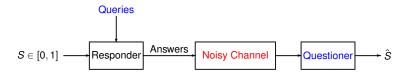
Questioner



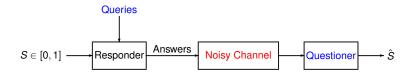




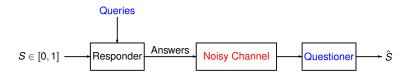




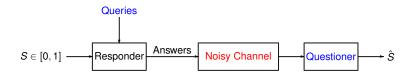
 Ulam-Rényi game: a noisy channel is introduced to model the behavior of the responder who can lie to decline to answer queries



- Ulam-Rényi game: a noisy channel is introduced to model the behavior of the responder who can lie to decline to answer queries
- Target: estimate a random variable S with unknown distribution



- Ulam-Rényi game: a noisy channel is introduced to model the behavior of the responder who can lie to decline to answer queries
- Target: estimate a random variable S with unknown distribution
- Task: design queries and decoder (scheme/strategy/procedure)



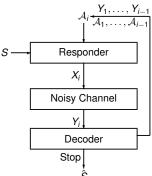
- Ulam-Rényi game: a noisy channel is introduced to model the behavior of the responder who can lie to decline to answer queries
- Target: estimate a random variable S with unknown distribution
- Task: design queries and decoder (scheme/strategy/procedure)
- Motivation: diverse applications including
  - medical diagnosis, chemical triage, human-in-the-loop decision-making
  - fault-tolerant communications, beamforming design in millimeter wave communication
  - target localization with a sensor network, object localization in an image

 $\bullet$  A query asks whether S lies in a certain set  $\mathcal{A} \subset [0,1]$ 

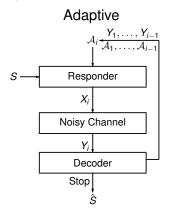
- A query asks whether S lies in a certain set  $A \subset [0, 1]$
- Query schemes can be classified as adaptive and non-adaptive

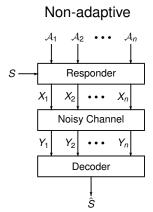
- A query asks whether S lies in a certain set  $\mathcal{A} \subset [0,1]$
- Query schemes can be classified as adaptive and non-adaptive

#### Adaptive

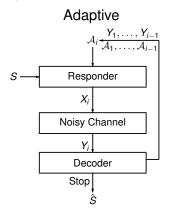


- A query asks whether S lies in a certain set  $A \subset [0,1]$
- Query schemes can be classified as adaptive and non-adaptive

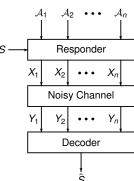


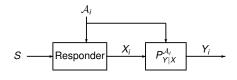


- A query asks whether S lies in a certain set  $\mathcal{A} \subset [0,1]$
- Query schemes can be classified as adaptive and non-adaptive



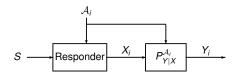






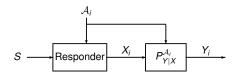
• Given a query (measurement) A, a responder's noiseless answer is corrupted by measurement-dependent noise via  $P_{Y|X}^{A}$ .

<sup>&</sup>lt;sup>1</sup>Y. Kaspi, O. Shayevitz, and T. Javidi, "Searching with measurement dependent noise," IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2690-2705, 2018.



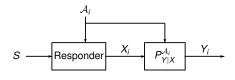
- Given a query (measurement) A, a responder's noiseless answer is corrupted by measurement-dependent noise via P<sup>A</sup><sub>Y|X</sub>.
- The channel  $P_{Y|X}^{\mathcal{A}}$  depends on the query  $\mathcal{A}$  only through a bounded Lipschitz continuous function  $f:[0,1]\to\mathcal{R}$  of its size  $|\mathcal{A}|$ .

<sup>&</sup>lt;sup>1</sup>Y. Kaspi, O. Shayevitz, and T. Javidi, "Searching with measurement dependent noise," IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2690-2705, 2018.



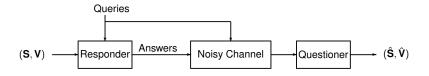
- Given a query (measurement) A, a responder's noiseless answer is corrupted by measurement-dependent noise via P<sup>A</sup><sub>Y|X</sub>.
- The channel  $P_{Y|X}^{\mathcal{A}}$  depends on the query  $\mathcal{A}$  only through a bounded Lipschitz continuous function  $f:[0,1]\to\mathcal{R}$  of its size  $|\mathcal{A}|$ .
- For any  $(q_1, q_2) \in [0, 1]^2$ ,  $|f(q_1) f(q_2)| \le \mu |q_1 q_2|$ .

<sup>&</sup>lt;sup>1</sup>Y. Kaspi, O. Shayevitz, and T. Javidi, "Searching with measurement dependent noise," IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2690-2705, 2018.

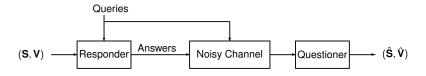


- Given a query (measurement) A, a responder's noiseless answer is corrupted by measurement-dependent noise via P<sup>A</sup><sub>Y|X</sub>.
- The channel  $P_{Y|X}^{\mathcal{A}}$  depends on the query  $\mathcal{A}$  only through a bounded Lipschitz continuous function  $f:[0,1]\to\mathcal{R}$  of its size  $|\mathcal{A}|$ .
- For any  $(q_1, q_2) \in [0, 1]^2$ ,  $|f(q_1) f(q_2)| \le \mu |q_1 q_2|$ .
- When f is a constant value function, the noise model reduces to a measurement-independent model.

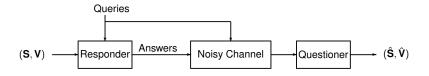
<sup>&</sup>lt;sup>1</sup>Y. Kaspi, O. Shayevitz, and T. Javidi, "Searching with measurement dependent noise," IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2690-2705, 2018.



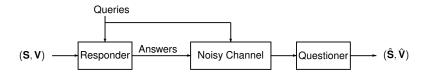
• Target: estimate the trajectory of a *d*-dimensional moving target with initial location  $\mathbf{S} = (S_1, \dots, S_d) \in [0, 1]^2$  and moving velocity  $\mathbf{V} = [V_1, \dots, V_d] \in [-v_+, v_+]^d$ 



- Target: estimate the trajectory of a *d*-dimensional moving target with initial location  $\mathbf{S} = (S_1, \dots, S_d) \in [0, 1]^2$  and moving velocity  $\mathbf{V} = [V_1, \dots, V_d] \in [-v_+, v_+]^d$
- Task: design queries and a decoder for accurate estimation
  - Both S and V are unknown to the questioner
  - The joint distribution  $f_{SV}$  of (S, V) is arbitrary and unknown



- Target: estimate the trajectory of a *d*-dimensional moving target with initial location  $\mathbf{S} = (S_1, \dots, S_d) \in [0, 1]^2$  and moving velocity  $\mathbf{V} = [V_1, \dots, V_d] \in [-v_+, v_+]^d$
- Task: design queries and a decoder for accurate estimation
  - Both **S** and **V** are unknown to the questioner
  - The joint distribution  $f_{SV}$  of (S, V) is arbitrary and unknown
- $\bullet$  Assumption: the responder knows both  $\boldsymbol{S}$  and  $\boldsymbol{V} \longrightarrow \text{real time locations of the target}$

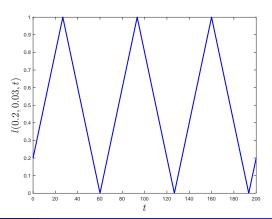


- Target: estimate the trajectory of a *d*-dimensional moving target with initial location  $\mathbf{S} = (S_1, \dots, S_d) \in [0, 1]^2$  and moving velocity  $\mathbf{V} = [V_1, \dots, V_d] \in [-v_+, v_+]^d$
- Task: design queries and a decoder for accurate estimation
  - Both **S** and **V** are unknown to the questioner
  - The joint distribution  $f_{SV}$  of (S, V) is arbitrary and unknown
- ullet Assumption: the responder knows both ullet and ullet real time locations of the target
- Applications: search for a moving target (e.g., a car, wild animals, missing airplane) using sensor networks or satellites

# The Torus model for the Moving Target

Given initial location  $\mathbf{s} = (s_1, \dots, s_d)$  and moving velocity  $\mathbf{v} = (v_1, \dots, v_d)$ , at each time  $t \in \mathbb{R}_+$ , the real time location of the target at *i*-th dimension satisfies:

$$l(s_i, v_i, t) := \begin{cases} 1 & \text{if } mod(s_i + tv_i, 2) = 1, \\ s_i + tv_i - \lfloor s_i + tv_i \rfloor & \text{if } s_i + tv_i \in \bigcup_{h \in \mathbb{N}} [2h, 2h + 1), \\ \lceil s_i + tv_i \rceil - (s_i + tv_i) & \text{otherwise,} \end{cases}$$



Given any  $(n, d) \in \mathbb{N}^2$ ,  $\delta \in \mathbb{R}_+$  and  $\varepsilon \in [0, 1)$ , a  $(n, d, \delta, \varepsilon)$ -non-adaptive query procedure consists of

- n queries  $\mathcal{A}^n$  where at time i, questioner asks whether the moving target's current location lies in set  $\mathcal{A}_i \subset [0,1]^d$
- and a decoder  $g: \mathcal{Y}^n \to [0,1]^d \times \mathcal{V}^d$  such that the worst-case excess-resolution probability satisfies

$$\mathrm{P_e}(\textit{n},\textit{d},\delta) := \sup_{\textit{f}_{\textbf{SV}}} \mathsf{Pr} \left\{ \max_{t \in [0:\textit{n}]} \|\textit{I}(\hat{\textbf{S}},\hat{\textbf{V}},t) - \textit{I}(\textbf{S},\textbf{V},t)\|_{\infty} > \delta \right\} \leq \varepsilon.$$

Given any  $(n, d) \in \mathbb{N}^2$ ,  $\delta \in \mathbb{R}_+$  and  $\varepsilon \in [0, 1)$ , a  $(n, d, \delta, \varepsilon)$ -non-adaptive query procedure consists of

- n queries  $A^n$  where at time i, questioner asks whether the moving target's current location lies in set  $A_i \subset [0,1]^d$
- and a decoder  $g: \mathcal{Y}^n \to [0,1]^d \times \mathcal{V}^d$  such that the worst-case excess-resolution probability satisfies

$$\mathrm{P}_{\mathrm{e}}(\textit{n},\textit{d},\delta) := \sup_{\textit{f}_{\boldsymbol{\mathsf{SV}}}} \Pr\left\{ \max_{t \in [0:\textit{n}]} \|\textit{I}(\hat{\boldsymbol{\mathsf{S}}},\hat{\boldsymbol{\mathsf{V}}},t) - \textit{I}(\boldsymbol{\mathsf{S}},\boldsymbol{\mathsf{V}},t)\|_{\infty} > \delta \right\} \leq \varepsilon.$$

 Accurate estimation of the trajectory implies accurate estimation of (S, V) and vice versa

Given any  $(n, d) \in \mathbb{N}^2$ ,  $\delta \in \mathbb{R}_+$  and  $\varepsilon \in [0, 1)$ , a  $(n, d, \delta, \varepsilon)$ -non-adaptive query procedure consists of

- n queries  $A^n$  where at time i, questioner asks whether the moving target's current location lies in set  $A_i \subset [0,1]^d$
- and a decoder  $g: \mathcal{Y}^n \to [0,1]^d \times \mathcal{V}^d$  such that the worst-case excess-resolution probability satisfies

$$\mathrm{P_e}(\textit{n},\textit{d},\delta) := \sup_{\textit{f}_{\textbf{SV}}} \Pr\left\{ \max_{t \in [0:\textit{n}]} \|\textit{I}(\hat{\textbf{S}},\hat{\textbf{V}},t) - \textit{I}(\textbf{S},\textbf{V},t)\|_{\infty} > \delta \right\} \leq \varepsilon.$$

- Accurate estimation of the trajectory implies accurate estimation of (S, V) and vice versa
  - Excess-resolution event occurs if  $|\hat{S}_i S_i| > \delta$  or  $n|\hat{V}_i V_i| > 2\delta$  for some dimension  $i \in [d]$

Given any  $(n, d) \in \mathbb{N}^2$ ,  $\delta \in \mathbb{R}_+$  and  $\varepsilon \in [0, 1)$ , a  $(n, d, \delta, \varepsilon)$ -non-adaptive query procedure consists of

- n queries  $A^n$  where at time i, questioner asks whether the moving target's current location lies in set  $A_i \subset [0,1]^d$
- and a decoder  $g: \mathcal{Y}^n \to [0,1]^d \times \mathcal{V}^d$  such that the worst-case excess-resolution probability satisfies

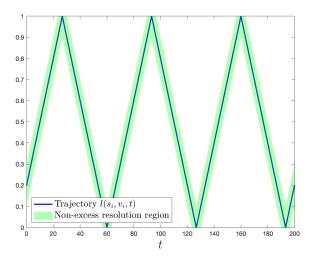
$$\mathrm{P}_{\mathrm{e}}(\textit{n},\textit{d},\delta) := \sup_{\textit{f}_{\boldsymbol{\mathsf{SV}}}} \Pr\left\{ \max_{t \in [0:\textit{n}]} \|\textit{I}(\hat{\boldsymbol{\mathsf{S}}},\hat{\boldsymbol{\mathsf{V}}},t) - \textit{I}(\boldsymbol{\mathsf{S}},\boldsymbol{\mathsf{V}},t)\|_{\infty} > \delta \right\} \leq \varepsilon.$$

- Accurate estimation of the trajectory implies accurate estimation of (S, V) and vice versa
  - Excess-resolution event occurs if  $|\hat{S}_i S_i| > \delta$  or  $n|\hat{V}_i V_i| > 2\delta$  for some dimension  $i \in [d]$
  - Excess-resolution event won't occur if  $|\hat{S}_i S_i| \le \alpha \delta$  and  $n|\hat{V}_i V_i| \le (1 \alpha)\delta$  for all dimensions  $i \in [d]$



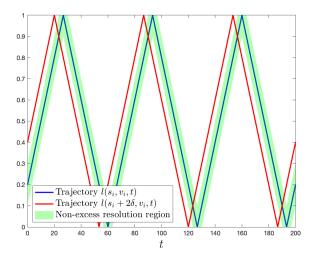
#### Explanation of the Non-Excess Resolution Event

For each  $i \in [d]$ , the i-th dimension does *not* incur excess-resolution if the estimated trajectories are within  $\delta$  around the true trajectory at each time (in green shaded region).



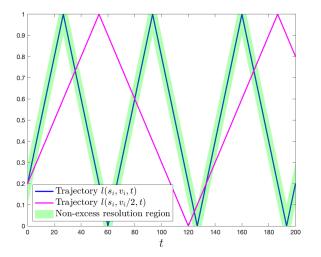
### Excess-Resolution Case 1: Wrong Estimate of Initial Location

If the initial location  $s_i$  is estimated wrongly such that  $|\hat{s}_i - s_i| > \delta$ , then an excess-resolution event occurs.



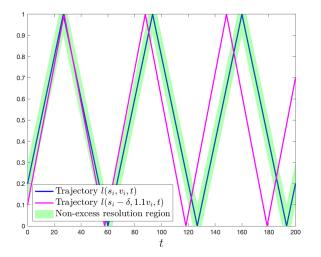
# Excess-Resolution Case 2: Wrong Estimate of the Velocity

If the velocity  $v_i$  is estimated wrongly such that  $n|\hat{v}_i - v_i| > 2\delta$ , then an excess-resolution event occurs.



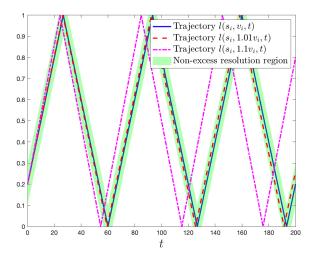
# Excess-Resolution Case 3: Wrong Estimate of Both

If both the location  $s_i$  and the velocity  $v_i$  are estimated wrongly, an excess-resolution event occurs.



#### Excess-Resolution Event and the Number of Queries

Longer search time *n* requires more accurate estimation of the initial location and the velocity



#### Fundamental Limit

• Given any number of queries  $n \in \mathbb{N}$  and  $\varepsilon \in [0, 1]$ ,

 $\delta^*(n, d, \varepsilon) := \inf\{\delta \in \mathbb{R}_+ : \exists \text{ an } (n, d, \delta, \varepsilon) - \text{non-adaptive query procedure}\}.$ 

#### Fundamental Limit

• Given any number of queries  $n \in \mathbb{N}$  and  $\varepsilon \in [0, 1]$ ,

$$\delta^*(n, d, \varepsilon) := \inf\{\delta \in \mathbb{R}_+ : \exists \text{ an } (n, d, \delta, \varepsilon) - \text{non-adaptive query procedure}\}.$$

• minimal resolution achievable by any non-adaptive query procedure with n queries and excess-resolution probability  $\varepsilon$ 

#### **Fundamental Limit**

• Given any number of queries  $n \in \mathbb{N}$  and  $\varepsilon \in [0, 1]$ ,

$$\delta^*(n, d, \varepsilon) := \inf\{\delta \in \mathbb{R}_+ : \exists \text{ an } (n, d, \delta, \varepsilon) - \text{non-adaptive query procedure}\}.$$

- minimal resolution achievable by any non-adaptive query procedure with n queries and excess-resolution probability  $\varepsilon$
- finitely many query performance is more practical than asymptotic analysis with infinite number of queries

### Fundamental Limit

• Given any number of queries  $n \in \mathbb{N}$  and  $\varepsilon \in [0, 1]$ ,

$$\delta^*(n, d, \varepsilon) := \inf\{\delta \in \mathbb{R}_+ : \exists \text{ an } (n, d, \delta, \varepsilon) - \text{non-adaptive query procedure}\}.$$

- minimal resolution achievable by any non-adaptive query procedure with n queries and excess-resolution probability  $\varepsilon$
- finitely many query performance is more practical than asymptotic analysis with infinite number of queries
- Dual quantity (sample complexity):

$$n^*(d, \delta, \varepsilon) = \inf\{n \in \mathbb{N} : \delta^*(n, d, \varepsilon) \leq \delta\}$$

#### Theorem 1

For any  $\varepsilon \in (0,1)$  and  $d \in \mathbb{N}$ , the minimal achievable resolution  $\delta^*(n,d,\varepsilon)$  satisfies

• if 
$$nv_+ = O(n^t)$$
 for  $t \in [0.5, 1)$ ,

$$-2d \log \delta^*(n, d, \varepsilon) = nC + O(nv_+);$$

$$-2d\log\delta^*(n,d,\varepsilon) = nC + \sqrt{nV_{\varepsilon}}\Phi^{-1}(\varepsilon) + O(\max\{nv_+,\log n\});$$

#### Theorem 1

For any  $\varepsilon \in (0,1)$  and  $d \in \mathbb{N}$ , the minimal achievable resolution  $\delta^*(n,d,\varepsilon)$  satisfies

• if  $nv_+ = O(n^t)$  for  $t \in [0.5, 1)$ ,

$$-2d \log \delta^*(n, d, \varepsilon) = nC + O(nv_+);$$

• *if*  $nv_+ = O(n^t)$  *for*  $t \in [0, 0.5)$ 

$$-2d\log\delta^*(n,d,\varepsilon) = nC + \sqrt{nV_{\varepsilon}}\Phi^{-1}(\varepsilon) + O(\max\{nv_+,\log n\});$$

Provides tight approximation to the performance of optimal non-adaptive queries

#### Theorem 1

For any  $\varepsilon \in (0,1)$  and  $d \in \mathbb{N}$ , the minimal achievable resolution  $\delta^*(n,d,\varepsilon)$  satisfies

• if 
$$nv_+ = O(n^t)$$
 for  $t \in [0.5, 1)$ ,

$$-2d \log \delta^*(n, d, \varepsilon) = nC + O(nv_+);$$

$$-2d\log\delta^*(n,d,\varepsilon)=nC+\sqrt{nV_\varepsilon}\Phi^{-1}(\varepsilon)+O(\max\{nv_+,\log n\});$$

- Provides tight approximation to the performance of optimal non-adaptive queries
- The two assumptions on maximal speed  $v_+$  specify two regimes
  - Regime 1: # queries is greater than  $O(1/v_+^2)$  (fast target,  $v_+ = O(\frac{1}{\sqrt{n}})$  and  $v_+ = o(1)$ )

#### Theorem 1

For any  $\varepsilon \in (0,1)$  and  $d \in \mathbb{N}$ , the minimal achievable resolution  $\delta^*(n,d,\varepsilon)$  satisfies

• if 
$$nv_+ = O(n^t)$$
 for  $t \in [0.5, 1)$ ,

$$-2d \log \delta^*(n,d,\varepsilon) = nC + O(nv_+);$$

$$-2d\log\delta^*(n,d,\varepsilon) = nC + \sqrt{nV_{\varepsilon}}\Phi^{-1}(\varepsilon) + O(\max\{nv_+,\log n\});$$

- Provides tight approximation to the performance of optimal non-adaptive queries
- ullet The two assumptions on maximal speed  $v_+$  specify two regimes
  - Regime 1: # queries is greater than  $O(1/v_+^2)$  (fast target,  $v_+ = O(\frac{1}{\sqrt{n}})$  and  $v_+ = o(1)$ )
  - Regime 2: # queries is fewer than  $O(1/v_+^2)$  (slow target,  $v_+ = o(\frac{1}{\sqrt{n}})$ )



#### Theorem 1

For any  $\varepsilon \in (0,1)$  and  $d \in \mathbb{N}$ , the minimal achievable resolution  $\delta^*(n,d,\varepsilon)$  satisfies

• if  $nv_+ = O(n^t)$  for  $t \in [0.5, 1)$ ,

$$-2d \log \delta^*(n, d, \varepsilon) = nC + O(nv_+);$$

$$-2d\log\delta^*(n,d,\varepsilon)=nC+\sqrt{nV_\varepsilon}\Phi^{-1}(\varepsilon)+O(\max\{nv_+,\log n\});$$

- Provides tight approximation to the performance of optimal non-adaptive queries
- ullet The two assumptions on maximal speed  $v_+$  specify two regimes
  - Regime 1: # queries is greater than  $O(1/v_+^2)$  (fast target,  $v_+ = O(\frac{1}{\sqrt{n}})$  and  $v_+ = o(1)$ )
  - Regime 2: # queries is fewer than  $O(1/v_+^2)$  (slow target,  $v_+ = o(\frac{1}{\sqrt{n}})$ )
- In Regime 2, the first-order asymptotic result is not sufficient (see next slide)

## First- and Second-order Asymptotics for the Resolution Decay Rate

First-order asymptotics: the asymptotic resolution decay rate

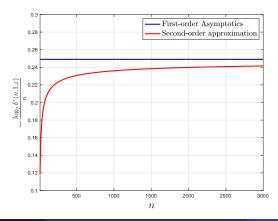
$$\lim_{n\to\infty}\frac{-\log\delta^*(n,d,\varepsilon)}{n}=\frac{C}{2d}$$

## First- and Second-order Asymptotics for the Resolution Decay Rate

First-order asymptotics: the asymptotic resolution decay rate

$$\lim_{n\to\infty}\frac{-\log\delta^*(n,d,\varepsilon)}{n}=\frac{C}{2d}$$

• Second-order asymptotics: characterize the backoff from first-order  $(nv_+ = o(\sqrt{n}))$ 



### **Further Remarks**

- Refines the result by Kaspi *et al.*, TIT 2018 (Theorem 3):
  - Second-order asymptotic, non-vanishing vs first-order asymptotic, vanishing
  - Any measurement dependent channel vs a measurement dependent BSC
  - Multidimensional vs one-dimensional

### **Further Remarks**

- Refines the result by Kaspi et al., TIT 2018 (Theorem 3):
  - Second-order asymptotic, non-vanishing vs first-order asymptotic, vanishing
  - Any measurement dependent channel vs a measurement dependent BSC
  - Multidimensional vs one-dimensional
- Consistent with intuition that searching for a moving d-dimensional target is roughly equivalent to searching for a 2d-dimensional target
  - Analysis is totally different: account for all trajectories and twist of location and velocity
  - Much more complicated: time complexity is  $O(n^{2d+1}v_+^dM^{2d})$  to search for a moving target v.s.  $O(nM^{2d})$  to search for a stationary target when the target resolution is  $\frac{1}{M}$

## An Important Implication: Phase Transition

• Minimal excess-resolution probability  $\varepsilon^*(n,d,\delta)$  when  $nv_+=o(\sqrt{n})$ 

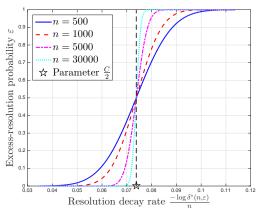
$$\varepsilon^*(n, d, \delta) = \Phi\left(\frac{-d\log\delta - nC}{\sqrt{nV_{\varepsilon}}}\right) + o(1)$$

## An Important Implication: Phase Transition

• Minimal excess-resolution probability  $\varepsilon^*(n,d,\delta)$  when  $nv_+=o(\sqrt{n})$ 

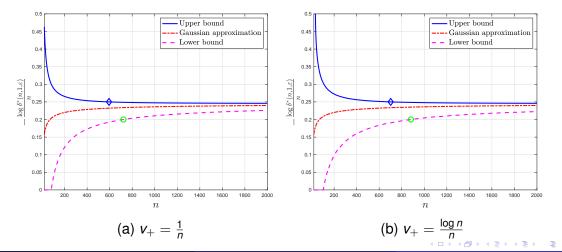
$$\varepsilon^*(n, d, \delta) = \Phi\left(\frac{-d\log\delta - nC}{\sqrt{nV_{\varepsilon}}}\right) + o(1)$$

• BSC with crossover probability  $(2|\mathcal{A}| + 0.5) \times 0.2$ 



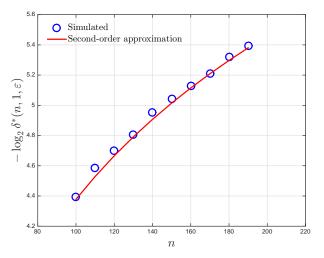
## The Impact of the Maximal Speed for A One-Dimensional Target

- Consider uniformly distributed location  $S \in [0, 1]$  and velocity  $V \in [-v_+, v_+]$
- Consider BSC with crossover probability  $(|\mathcal{A}| + 0.5) \times 0.05$  and set  $\varepsilon = 0.1$ .
- Gaussian approximation (Second-order asymptotic approximation)



### **Numerical Simulation**

- $nv_+ = 0.1$
- 10<sup>4</sup> independent trials for each *n*



Searching for a moving target with unknown initial location and velocity

- Searching for a moving target with unknown initial location and velocity
  - Second-order asymptotic approximation to the minimal achievable resolution for "slow" moving target

- Searching for a moving target with unknown initial location and velocity
  - Second-order asymptotic approximation to the minimal achievable resolution for "slow" moving target
    - Tight approximation for non-adaptive query procedure with finitely many queries

- Searching for a moving target with unknown initial location and velocity
  - Second-order asymptotic approximation to the minimal achievable resolution for "slow" moving target
    - Tight approximation for non-adaptive query procedure with finitely many queries
    - Phase transition with a critical rate

- Searching for a moving target with unknown initial location and velocity
  - Second-order asymptotic approximation to the minimal achievable resolution for "slow" moving target
    - Tight approximation for non-adaptive query procedure with finitely many queries
    - Phase transition with a critical rate
    - The impact of maximal speed

- Searching for a moving target with unknown initial location and velocity
  - Second-order asymptotic approximation to the minimal achievable resolution for "slow" moving target
    - Tight approximation for non-adaptive query procedure with finitely many queries
    - Phase transition with a critical rate
    - The impact of maximal speed
  - Searching for a d-dimensional moving target takes much longer than searching for a 2d-dimensional stationary target

- Searching for a moving target with unknown initial location and velocity
  - Second-order asymptotic approximation to the minimal achievable resolution for "slow" moving target
    - Tight approximation for non-adaptive query procedure with finitely many queries
    - Phase transition with a critical rate
    - The impact of maximal speed
  - Searching for a d-dimensional moving target takes much longer than searching for a 2d-dimensional stationary target
- Future research directions
  - Generalize the torus model for practical uses

- Searching for a moving target with unknown initial location and velocity
  - Second-order asymptotic approximation to the minimal achievable resolution for "slow" moving target
    - Tight approximation for non-adaptive query procedure with finitely many queries
    - Phase transition with a critical rate
    - The impact of maximal speed
  - Searching for a d-dimensional moving target takes much longer than searching for a 2d-dimensional stationary target
- Future research directions
  - Generalize the torus model for practical uses
  - Low complexity practical algorithms which achieve derived benchmarks

- Searching for a moving target with unknown initial location and velocity
  - Second-order asymptotic approximation to the minimal achievable resolution for "slow" moving target
    - Tight approximation for non-adaptive query procedure with finitely many queries
    - Phase transition with a critical rate
    - The impact of maximal speed
  - Searching for a d-dimensional moving target takes much longer than searching for a 2d-dimensional stationary target
- Future research directions
  - Generalize the torus model for practical uses
  - Low complexity practical algorithms which achieve derived benchmarks
  - Adaptive query procedure (Benefit of adaptivity?)

- Searching for a moving target with unknown initial location and velocity
  - Second-order asymptotic approximation to the minimal achievable resolution for "slow" moving target
    - Tight approximation for non-adaptive query procedure with finitely many queries
    - Phase transition with a critical rate
    - The impact of maximal speed
  - Searching for a d-dimensional moving target takes much longer than searching for a 2d-dimensional stationary target
- Future research directions
  - Generalize the torus model for practical uses
  - Low complexity practical algorithms which achieve derived benchmarks
  - Adaptive query procedure (Benefit of adaptivity?)
  - Simultaneous search for multiple moving targets