Resolution Limits of 20 Questions Search Strategies for Moving Targets

Alfred O. Hero (University of Michigan, Ann Arbor)

Joint work with Lin Zhou (Beihang University)

Jun. 9, 2021

Responder

Questioner

 Ulam-Rényi game: a noisy channel is introduced to model the behavior of the responder who can lie to decline to answer queries

- Ulam-Rényi game: a noisy channel is introduced to model the behavior of the responder who can lie to decline to answer queries
- Target: estimate a random variable S with unknown distribution

- Ulam-Rényi game: a noisy channel is introduced to model the behavior of the responder who can lie to decline to answer queries
- Target: estimate a random variable S with unknown distribution
- Task: design queries and decoder (scheme/strategy/procedure)

- Ulam-Rényi game: a noisy channel is introduced to model the behavior of the responder who can lie to decline to answer queries
- Target: estimate a random variable S with unknown distribution
- Task: design queries and decoder (scheme/strategy/procedure)
- Motivation: diverse applications including
 - medical diagnosis, chemical triage, human-in-the-loop decision-making
 - fault-tolerant communications, beamforming design in millimeter wave communication
 - target localization with a sensor network, object localization in an image

 \bullet A query asks whether S lies in a certain set $\mathcal{A} \subset [0,1]$

- A query asks whether S lies in a certain set $A \subset [0, 1]$
- Query schemes can be classified as adaptive and non-adaptive

- A query asks whether S lies in a certain set $\mathcal{A} \subset [0,1]$
- Query schemes can be classified as adaptive and non-adaptive

Adaptive

- A query asks whether S lies in a certain set $A \subset [0,1]$
- Query schemes can be classified as adaptive and non-adaptive

- A query asks whether S lies in a certain set $\mathcal{A} \subset [0,1]$
- Query schemes can be classified as adaptive and non-adaptive

• Given a query (measurement) A, a responder's noiseless answer is corrupted by measurement-dependent noise via $P_{Y|X}^{A}$.

¹Y. Kaspi, O. Shayevitz, and T. Javidi, "Searching with measurement dependent noise," IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2690-2705, 2018.

- Given a query (measurement) A, a responder's noiseless answer is corrupted by measurement-dependent noise via P^A_{Y|X}.
- The channel $P_{Y|X}^{\mathcal{A}}$ depends on the query \mathcal{A} only through a bounded Lipschitz continuous function $f:[0,1]\to\mathcal{R}$ of its size $|\mathcal{A}|$.

¹Y. Kaspi, O. Shayevitz, and T. Javidi, "Searching with measurement dependent noise," IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2690-2705, 2018.

- Given a query (measurement) A, a responder's noiseless answer is corrupted by measurement-dependent noise via P^A_{Y|X}.
- The channel $P_{Y|X}^{\mathcal{A}}$ depends on the query \mathcal{A} only through a bounded Lipschitz continuous function $f:[0,1]\to\mathcal{R}$ of its size $|\mathcal{A}|$.
- For any $(q_1, q_2) \in [0, 1]^2$, $|f(q_1) f(q_2)| \le \mu |q_1 q_2|$.

¹Y. Kaspi, O. Shayevitz, and T. Javidi, "Searching with measurement dependent noise," IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2690-2705, 2018.

- Given a query (measurement) A, a responder's noiseless answer is corrupted by measurement-dependent noise via P^A_{Y|X}.
- The channel $P_{Y|X}^{\mathcal{A}}$ depends on the query \mathcal{A} only through a bounded Lipschitz continuous function $f:[0,1]\to\mathcal{R}$ of its size $|\mathcal{A}|$.
- For any $(q_1, q_2) \in [0, 1]^2$, $|f(q_1) f(q_2)| \le \mu |q_1 q_2|$.
- When f is a constant value function, the noise model reduces to a measurement-independent model.

¹Y. Kaspi, O. Shayevitz, and T. Javidi, "Searching with measurement dependent noise," IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2690-2705, 2018.

• Target: estimate the trajectory of a *d*-dimensional moving target with initial location $\mathbf{S} = (S_1, \dots, S_d) \in [0, 1]^2$ and moving velocity $\mathbf{V} = [V_1, \dots, V_d] \in [-v_+, v_+]^d$

- Target: estimate the trajectory of a *d*-dimensional moving target with initial location $\mathbf{S} = (S_1, \dots, S_d) \in [0, 1]^2$ and moving velocity $\mathbf{V} = [V_1, \dots, V_d] \in [-v_+, v_+]^d$
- Task: design queries and a decoder for accurate estimation
 - Both S and V are unknown to the questioner
 - The joint distribution f_{SV} of (S, V) is arbitrary and unknown

- Target: estimate the trajectory of a *d*-dimensional moving target with initial location $\mathbf{S} = (S_1, \dots, S_d) \in [0, 1]^2$ and moving velocity $\mathbf{V} = [V_1, \dots, V_d] \in [-v_+, v_+]^d$
- Task: design queries and a decoder for accurate estimation
 - Both **S** and **V** are unknown to the questioner
 - The joint distribution f_{SV} of (S, V) is arbitrary and unknown
- \bullet Assumption: the responder knows both \boldsymbol{S} and $\boldsymbol{V} \longrightarrow \text{real time locations of the target}$

- Target: estimate the trajectory of a *d*-dimensional moving target with initial location $\mathbf{S} = (S_1, \dots, S_d) \in [0, 1]^2$ and moving velocity $\mathbf{V} = [V_1, \dots, V_d] \in [-v_+, v_+]^d$
- Task: design queries and a decoder for accurate estimation
 - Both **S** and **V** are unknown to the questioner
 - The joint distribution f_{SV} of (S, V) is arbitrary and unknown
- ullet Assumption: the responder knows both ullet and ullet real time locations of the target
- Applications: search for a moving target (e.g., a car, wild animals, missing airplane) using sensor networks or satellites

The Torus model for the Moving Target

Given initial location $\mathbf{s} = (s_1, \dots, s_d)$ and moving velocity $\mathbf{v} = (v_1, \dots, v_d)$, at each time $t \in \mathbb{R}_+$, the real time location of the target at *i*-th dimension satisfies:

$$l(s_i, v_i, t) := \begin{cases} 1 & \text{if } mod(s_i + tv_i, 2) = 1, \\ s_i + tv_i - \lfloor s_i + tv_i \rfloor & \text{if } s_i + tv_i \in \bigcup_{h \in \mathbb{N}} [2h, 2h + 1), \\ \lceil s_i + tv_i \rceil - (s_i + tv_i) & \text{otherwise,} \end{cases}$$

Given any $(n, d) \in \mathbb{N}^2$, $\delta \in \mathbb{R}_+$ and $\varepsilon \in [0, 1)$, a $(n, d, \delta, \varepsilon)$ -non-adaptive query procedure consists of

- n queries \mathcal{A}^n where at time i, questioner asks whether the moving target's current location lies in set $\mathcal{A}_i \subset [0,1]^d$
- and a decoder $g: \mathcal{Y}^n \to [0,1]^d \times \mathcal{V}^d$ such that the worst-case excess-resolution probability satisfies

$$\mathrm{P_e}(\textit{n},\textit{d},\delta) := \sup_{\textit{f}_{\textbf{SV}}} \mathsf{Pr} \left\{ \max_{t \in [0:\textit{n}]} \|\textit{I}(\hat{\textbf{S}},\hat{\textbf{V}},t) - \textit{I}(\textbf{S},\textbf{V},t)\|_{\infty} > \delta \right\} \leq \varepsilon.$$

Given any $(n, d) \in \mathbb{N}^2$, $\delta \in \mathbb{R}_+$ and $\varepsilon \in [0, 1)$, a $(n, d, \delta, \varepsilon)$ -non-adaptive query procedure consists of

- n queries A^n where at time i, questioner asks whether the moving target's current location lies in set $A_i \subset [0,1]^d$
- and a decoder $g: \mathcal{Y}^n \to [0,1]^d \times \mathcal{V}^d$ such that the worst-case excess-resolution probability satisfies

$$\mathrm{P}_{\mathrm{e}}(\textit{n},\textit{d},\delta) := \sup_{\textit{f}_{\boldsymbol{\mathsf{SV}}}} \Pr\left\{ \max_{t \in [0:\textit{n}]} \|\textit{I}(\hat{\boldsymbol{\mathsf{S}}},\hat{\boldsymbol{\mathsf{V}}},t) - \textit{I}(\boldsymbol{\mathsf{S}},\boldsymbol{\mathsf{V}},t)\|_{\infty} > \delta \right\} \leq \varepsilon.$$

 Accurate estimation of the trajectory implies accurate estimation of (S, V) and vice versa

Given any $(n, d) \in \mathbb{N}^2$, $\delta \in \mathbb{R}_+$ and $\varepsilon \in [0, 1)$, a $(n, d, \delta, \varepsilon)$ -non-adaptive query procedure consists of

- n queries A^n where at time i, questioner asks whether the moving target's current location lies in set $A_i \subset [0,1]^d$
- and a decoder $g: \mathcal{Y}^n \to [0,1]^d \times \mathcal{V}^d$ such that the worst-case excess-resolution probability satisfies

$$\mathrm{P_e}(\textit{n},\textit{d},\delta) := \sup_{\textit{f}_{\textbf{SV}}} \Pr\left\{ \max_{t \in [0:\textit{n}]} \|\textit{I}(\hat{\textbf{S}},\hat{\textbf{V}},t) - \textit{I}(\textbf{S},\textbf{V},t)\|_{\infty} > \delta \right\} \leq \varepsilon.$$

- Accurate estimation of the trajectory implies accurate estimation of (S, V) and vice versa
 - Excess-resolution event occurs if $|\hat{S}_i S_i| > \delta$ or $n|\hat{V}_i V_i| > 2\delta$ for some dimension $i \in [d]$

Given any $(n, d) \in \mathbb{N}^2$, $\delta \in \mathbb{R}_+$ and $\varepsilon \in [0, 1)$, a $(n, d, \delta, \varepsilon)$ -non-adaptive query procedure consists of

- n queries A^n where at time i, questioner asks whether the moving target's current location lies in set $A_i \subset [0,1]^d$
- and a decoder $g: \mathcal{Y}^n \to [0,1]^d \times \mathcal{V}^d$ such that the worst-case excess-resolution probability satisfies

$$\mathrm{P}_{\mathrm{e}}(\textit{n},\textit{d},\delta) := \sup_{\textit{f}_{\boldsymbol{\mathsf{SV}}}} \Pr\left\{ \max_{t \in [0:\textit{n}]} \|\textit{I}(\hat{\boldsymbol{\mathsf{S}}},\hat{\boldsymbol{\mathsf{V}}},t) - \textit{I}(\boldsymbol{\mathsf{S}},\boldsymbol{\mathsf{V}},t)\|_{\infty} > \delta \right\} \leq \varepsilon.$$

- Accurate estimation of the trajectory implies accurate estimation of (S, V) and vice versa
 - Excess-resolution event occurs if $|\hat{S}_i S_i| > \delta$ or $n|\hat{V}_i V_i| > 2\delta$ for some dimension $i \in [d]$
 - Excess-resolution event won't occur if $|\hat{S}_i S_i| \le \alpha \delta$ and $n|\hat{V}_i V_i| \le (1 \alpha)\delta$ for all dimensions $i \in [d]$

Explanation of the Non-Excess Resolution Event

For each $i \in [d]$, the i-th dimension does *not* incur excess-resolution if the estimated trajectories are within δ around the true trajectory at each time (in green shaded region).

Excess-Resolution Case 1: Wrong Estimate of Initial Location

If the initial location s_i is estimated wrongly such that $|\hat{s}_i - s_i| > \delta$, then an excess-resolution event occurs.

Excess-Resolution Case 2: Wrong Estimate of the Velocity

If the velocity v_i is estimated wrongly such that $n|\hat{v}_i - v_i| > 2\delta$, then an excess-resolution event occurs.

Excess-Resolution Case 3: Wrong Estimate of Both

If both the location s_i and the velocity v_i are estimated wrongly, an excess-resolution event occurs.

Excess-Resolution Event and the Number of Queries

Longer search time *n* requires more accurate estimation of the initial location and the velocity

Fundamental Limit

• Given any number of queries $n \in \mathbb{N}$ and $\varepsilon \in [0, 1]$,

 $\delta^*(n, d, \varepsilon) := \inf\{\delta \in \mathbb{R}_+ : \exists \text{ an } (n, d, \delta, \varepsilon) - \text{non-adaptive query procedure}\}.$

Fundamental Limit

• Given any number of queries $n \in \mathbb{N}$ and $\varepsilon \in [0, 1]$,

$$\delta^*(n, d, \varepsilon) := \inf\{\delta \in \mathbb{R}_+ : \exists \text{ an } (n, d, \delta, \varepsilon) - \text{non-adaptive query procedure}\}.$$

• minimal resolution achievable by any non-adaptive query procedure with n queries and excess-resolution probability ε

Fundamental Limit

• Given any number of queries $n \in \mathbb{N}$ and $\varepsilon \in [0, 1]$,

$$\delta^*(n, d, \varepsilon) := \inf\{\delta \in \mathbb{R}_+ : \exists \text{ an } (n, d, \delta, \varepsilon) - \text{non-adaptive query procedure}\}.$$

- minimal resolution achievable by any non-adaptive query procedure with n queries and excess-resolution probability ε
- finitely many query performance is more practical than asymptotic analysis with infinite number of queries

Fundamental Limit

• Given any number of queries $n \in \mathbb{N}$ and $\varepsilon \in [0, 1]$,

$$\delta^*(n, d, \varepsilon) := \inf\{\delta \in \mathbb{R}_+ : \exists \text{ an } (n, d, \delta, \varepsilon) - \text{non-adaptive query procedure}\}.$$

- minimal resolution achievable by any non-adaptive query procedure with n queries and excess-resolution probability ε
- finitely many query performance is more practical than asymptotic analysis with infinite number of queries
- Dual quantity (sample complexity):

$$n^*(d, \delta, \varepsilon) = \inf\{n \in \mathbb{N} : \delta^*(n, d, \varepsilon) \leq \delta\}$$

Theorem 1

For any $\varepsilon \in (0,1)$ and $d \in \mathbb{N}$, the minimal achievable resolution $\delta^*(n,d,\varepsilon)$ satisfies

• if
$$nv_+ = O(n^t)$$
 for $t \in [0.5, 1)$,

$$-2d \log \delta^*(n, d, \varepsilon) = nC + O(nv_+);$$

$$-2d\log\delta^*(n,d,\varepsilon) = nC + \sqrt{nV_{\varepsilon}}\Phi^{-1}(\varepsilon) + O(\max\{nv_+,\log n\});$$

Theorem 1

For any $\varepsilon \in (0,1)$ and $d \in \mathbb{N}$, the minimal achievable resolution $\delta^*(n,d,\varepsilon)$ satisfies

• if $nv_+ = O(n^t)$ for $t \in [0.5, 1)$,

$$-2d \log \delta^*(n, d, \varepsilon) = nC + O(nv_+);$$

• *if* $nv_+ = O(n^t)$ *for* $t \in [0, 0.5)$

$$-2d\log\delta^*(n,d,\varepsilon) = nC + \sqrt{nV_{\varepsilon}}\Phi^{-1}(\varepsilon) + O(\max\{nv_+,\log n\});$$

Provides tight approximation to the performance of optimal non-adaptive queries

Theorem 1

For any $\varepsilon \in (0,1)$ and $d \in \mathbb{N}$, the minimal achievable resolution $\delta^*(n,d,\varepsilon)$ satisfies

• if
$$nv_+ = O(n^t)$$
 for $t \in [0.5, 1)$,

$$-2d \log \delta^*(n, d, \varepsilon) = nC + O(nv_+);$$

$$-2d\log\delta^*(n,d,\varepsilon)=nC+\sqrt{nV_\varepsilon}\Phi^{-1}(\varepsilon)+O(\max\{nv_+,\log n\});$$

- Provides tight approximation to the performance of optimal non-adaptive queries
- The two assumptions on maximal speed v_+ specify two regimes
 - Regime 1: # queries is greater than $O(1/v_+^2)$ (fast target, $v_+ = O(\frac{1}{\sqrt{n}})$ and $v_+ = o(1)$)

Theorem 1

For any $\varepsilon \in (0,1)$ and $d \in \mathbb{N}$, the minimal achievable resolution $\delta^*(n,d,\varepsilon)$ satisfies

• if
$$nv_+ = O(n^t)$$
 for $t \in [0.5, 1)$,

$$-2d \log \delta^*(n,d,\varepsilon) = nC + O(nv_+);$$

$$-2d\log\delta^*(n,d,\varepsilon) = nC + \sqrt{nV_{\varepsilon}}\Phi^{-1}(\varepsilon) + O(\max\{nv_+,\log n\});$$

- Provides tight approximation to the performance of optimal non-adaptive queries
- ullet The two assumptions on maximal speed v_+ specify two regimes
 - Regime 1: # queries is greater than $O(1/v_+^2)$ (fast target, $v_+ = O(\frac{1}{\sqrt{n}})$ and $v_+ = o(1)$)
 - Regime 2: # queries is fewer than $O(1/v_+^2)$ (slow target, $v_+ = o(\frac{1}{\sqrt{n}})$)

Theorem 1

For any $\varepsilon \in (0,1)$ and $d \in \mathbb{N}$, the minimal achievable resolution $\delta^*(n,d,\varepsilon)$ satisfies

• if $nv_+ = O(n^t)$ for $t \in [0.5, 1)$,

$$-2d \log \delta^*(n, d, \varepsilon) = nC + O(nv_+);$$

$$-2d\log\delta^*(n,d,\varepsilon)=nC+\sqrt{nV_\varepsilon}\Phi^{-1}(\varepsilon)+O(\max\{nv_+,\log n\});$$

- Provides tight approximation to the performance of optimal non-adaptive queries
- ullet The two assumptions on maximal speed v_+ specify two regimes
 - Regime 1: # queries is greater than $O(1/v_+^2)$ (fast target, $v_+ = O(\frac{1}{\sqrt{n}})$ and $v_+ = o(1)$)
 - Regime 2: # queries is fewer than $O(1/v_+^2)$ (slow target, $v_+ = o(\frac{1}{\sqrt{n}})$)
- In Regime 2, the first-order asymptotic result is not sufficient (see next slide)

First- and Second-order Asymptotics for the Resolution Decay Rate

First-order asymptotics: the asymptotic resolution decay rate

$$\lim_{n\to\infty}\frac{-\log\delta^*(n,d,\varepsilon)}{n}=\frac{C}{2d}$$

First- and Second-order Asymptotics for the Resolution Decay Rate

First-order asymptotics: the asymptotic resolution decay rate

$$\lim_{n\to\infty}\frac{-\log\delta^*(n,d,\varepsilon)}{n}=\frac{C}{2d}$$

• Second-order asymptotics: characterize the backoff from first-order $(nv_+ = o(\sqrt{n}))$

Further Remarks

- Refines the result by Kaspi *et al.*, TIT 2018 (Theorem 3):
 - Second-order asymptotic, non-vanishing vs first-order asymptotic, vanishing
 - Any measurement dependent channel vs a measurement dependent BSC
 - Multidimensional vs one-dimensional

Further Remarks

- Refines the result by Kaspi et al., TIT 2018 (Theorem 3):
 - Second-order asymptotic, non-vanishing vs first-order asymptotic, vanishing
 - Any measurement dependent channel vs a measurement dependent BSC
 - Multidimensional vs one-dimensional
- Consistent with intuition that searching for a moving d-dimensional target is roughly equivalent to searching for a 2d-dimensional target
 - Analysis is totally different: account for all trajectories and twist of location and velocity
 - Much more complicated: time complexity is $O(n^{2d+1}v_+^dM^{2d})$ to search for a moving target v.s. $O(nM^{2d})$ to search for a stationary target when the target resolution is $\frac{1}{M}$

An Important Implication: Phase Transition

• Minimal excess-resolution probability $\varepsilon^*(n,d,\delta)$ when $nv_+=o(\sqrt{n})$

$$\varepsilon^*(n, d, \delta) = \Phi\left(\frac{-d\log\delta - nC}{\sqrt{nV_{\varepsilon}}}\right) + o(1)$$

An Important Implication: Phase Transition

• Minimal excess-resolution probability $\varepsilon^*(n,d,\delta)$ when $nv_+=o(\sqrt{n})$

$$\varepsilon^*(n, d, \delta) = \Phi\left(\frac{-d\log\delta - nC}{\sqrt{nV_{\varepsilon}}}\right) + o(1)$$

• BSC with crossover probability $(2|\mathcal{A}| + 0.5) \times 0.2$

The Impact of the Maximal Speed for A One-Dimensional Target

- Consider uniformly distributed location $S \in [0, 1]$ and velocity $V \in [-v_+, v_+]$
- Consider BSC with crossover probability $(|\mathcal{A}| + 0.5) \times 0.05$ and set $\varepsilon = 0.1$.
- Gaussian approximation (Second-order asymptotic approximation)

Numerical Simulation

- $nv_+ = 0.1$
- 10⁴ independent trials for each *n*

Searching for a moving target with unknown initial location and velocity

- Searching for a moving target with unknown initial location and velocity
 - Second-order asymptotic approximation to the minimal achievable resolution for "slow" moving target

- Searching for a moving target with unknown initial location and velocity
 - Second-order asymptotic approximation to the minimal achievable resolution for "slow" moving target
 - Tight approximation for non-adaptive query procedure with finitely many queries

- Searching for a moving target with unknown initial location and velocity
 - Second-order asymptotic approximation to the minimal achievable resolution for "slow" moving target
 - Tight approximation for non-adaptive query procedure with finitely many queries
 - Phase transition with a critical rate

- Searching for a moving target with unknown initial location and velocity
 - Second-order asymptotic approximation to the minimal achievable resolution for "slow" moving target
 - Tight approximation for non-adaptive query procedure with finitely many queries
 - Phase transition with a critical rate
 - The impact of maximal speed

- Searching for a moving target with unknown initial location and velocity
 - Second-order asymptotic approximation to the minimal achievable resolution for "slow" moving target
 - Tight approximation for non-adaptive query procedure with finitely many queries
 - Phase transition with a critical rate
 - The impact of maximal speed
 - Searching for a d-dimensional moving target takes much longer than searching for a 2d-dimensional stationary target

- Searching for a moving target with unknown initial location and velocity
 - Second-order asymptotic approximation to the minimal achievable resolution for "slow" moving target
 - Tight approximation for non-adaptive query procedure with finitely many queries
 - Phase transition with a critical rate
 - The impact of maximal speed
 - Searching for a d-dimensional moving target takes much longer than searching for a 2d-dimensional stationary target
- Future research directions
 - Generalize the torus model for practical uses

- Searching for a moving target with unknown initial location and velocity
 - Second-order asymptotic approximation to the minimal achievable resolution for "slow" moving target
 - Tight approximation for non-adaptive query procedure with finitely many queries
 - Phase transition with a critical rate
 - The impact of maximal speed
 - Searching for a d-dimensional moving target takes much longer than searching for a 2d-dimensional stationary target
- Future research directions
 - Generalize the torus model for practical uses
 - Low complexity practical algorithms which achieve derived benchmarks

- Searching for a moving target with unknown initial location and velocity
 - Second-order asymptotic approximation to the minimal achievable resolution for "slow" moving target
 - Tight approximation for non-adaptive query procedure with finitely many queries
 - Phase transition with a critical rate
 - The impact of maximal speed
 - Searching for a d-dimensional moving target takes much longer than searching for a 2d-dimensional stationary target
- Future research directions
 - Generalize the torus model for practical uses
 - Low complexity practical algorithms which achieve derived benchmarks
 - Adaptive query procedure (Benefit of adaptivity?)

- Searching for a moving target with unknown initial location and velocity
 - Second-order asymptotic approximation to the minimal achievable resolution for "slow" moving target
 - Tight approximation for non-adaptive query procedure with finitely many queries
 - Phase transition with a critical rate
 - The impact of maximal speed
 - Searching for a d-dimensional moving target takes much longer than searching for a 2d-dimensional stationary target
- Future research directions
 - Generalize the torus model for practical uses
 - Low complexity practical algorithms which achieve derived benchmarks
 - Adaptive query procedure (Benefit of adaptivity?)
 - Simultaneous search for multiple moving targets