Modurec: Recommender Systems with Feature and Time Modulation

Javier Maroto, Clément Vignac, and Pascal Frossard 6-11 June 2021

- 1. Introduction
- 2. Modurec architecture
- 3. Results
- 4. Conclusion

- 2. Modurec architecture
- 3. Results
- 4. Conclusion

Goal: Matrix reconstruction

- $\cdot \ \text{Rows} \longrightarrow \text{Users}$
- $\cdot \hspace{0.1 cm} \text{Columns} \longrightarrow \text{Items}$
- Very few known values (less than 1% of entries)
- Many items with few users, few items with many users

Content filtering

- Recommend similar items to the ones the user liked
- Requires prior info on items (e.g. movie genre, lead actor...)
- This info provides limited information
- Performance does not scale with data

Figure 2: Content filtering

Two main strategies

Collaborative filtering

- Recommendation based on user with similar rating history
- Performance scales with data
- Rich information based on user behavior
- Susceptible to cold start and concept drift

Figure 3: Collaborative filtering

Cold start and concept drift

Cold start

- Bad performance on new users or items due to lack of ratings
- Could stop new users from joining the platform

Concept drift

• Bad performance on older users or items due to distribution shifts over time

Figure 4: Ratings are time-dependent

2. Modurec architecture

3. Results

4. Conclusion

• Modurec: Address cold start and concept drift within a collaborative setting

Figure 5: Modurec architecture

Addressing concept drift: FiLM layers

Feature-wise Linear Modulation (FiLM)

- \cdot Used to combine time and rating information
- Only 3 free parameters
- Much more expressive than concatenation

$$\mathbf{R}_t = \alpha \mathbf{R} + \beta \mathbf{T}' + \gamma \mathbf{R} \cdot \mathbf{T}'$$

Addressing cold start: adaptive feature modulation

Adaptive feature modulation

- Adds the user/item feature information
- Uses a importance matrix to leverage when the feature information is most valuable (i.e. cold start)

$$\mathbf{A}_{ij} = \begin{cases} \sigma(w_1 | \mathcal{O}_{i,i} | + w_2 | \mathcal{O}_{u,j} | + b) & |\mathcal{O}_{i,i} |, |\mathcal{O}_{u,j} | > 0 \\ 0 & |\mathcal{O}_{i,i} |, |\mathcal{O}_{u,j} | = 0 \end{cases}$$
$$\mathbf{R}' = \mathbf{A} \cdot \mathbf{R}_t + (1 - \mathbf{A}) \cdot \mathbf{X}'$$

- 2. Modurec architecture
- 3. Results
- 4. Conclusion

Table 1: Average RMSE recommendation results on several datasets. We use Modurec_[DFT] as the nomenclature for our model. D = with dropout; F = with user and item features module; T = with time module.

Dataset	GRALS	sRGCNN	GC-MC	STAR	CF-NADE	Sparse	TimeSVD++	$I-Autorec^*$	Modurec	Modurec	Modurec
				-GCN		FC	flipped*		_D	_DT	_DFT
ML-100K	0.945	0.929	0.905	0.895	_	—	0.890		0.905		
							0.842		0.826		
ML-10M	-	_	0.777	0.770	0.771	0.769	0.749	0.782	0.789	0.777	0.779

- The **FiLM layer** that adds the time information has the **biggest** impact in performance
- The adaptive feature modulation does not seem to impact performance \longrightarrow very few test ratings with cold start

Table 2: Effect of combining the user and item features of the *Static* ($A_{ij} = \alpha$) and the *Adaptive* algorithms versus the *Nothing* algorithm, for users and items that have "few ratings" or "many ratings".

Dataset	Algorithm	Few ratings	Many ratings
ML-100K	Nothing	1.6093	0.8371
	Static	1.6000	0.8417
	Adaptive	1.3412	0.8380
ML-1M	Nothing	1.1481	0.7895
	Static	1.1457	0.7900
	Adaptive	1.1360	0.7897

- The adaptive feature modulation improves a lot the performance on cold start scenarios
- Does not hinder performance on the rest of cases (unlike Static)

- 2. Modurec architecture
- 3. Results
- 4. Conclusion

- Data-driven approaches should be given more importance
- If the information is complemenatry (e.g. time), FiLM layers can be useful
- If the information is conflictive (e.g. feature vs rating information), adaptive schemes can be useful