Modurec: Recommender Systems with Feature and Time Modulation

Javier Maroto, Clément Vignac and Pascal Frossard

Motivation Modurec Combine different sources of information to improve over state-of-the-art collaborative filtering • **Our proposal**: Address cold start and concept drift within a collaborative setting approaches in recommendation • Address cold start and concept drift, which affect collaborative filtering Inputs (MxN) (MxN) Autoencoder Timestamps of the ratings TimeNN Film (MxN) R layer (MxN) Ratings {1,2,3,4,5} Adaptive (M_{XN}) Encoder (M_{XN}) Decoder (M_{XN}) \mathbf{X}_{u} feature modulation (Mxd₁₁) User features Bilinear **Recommender systems** \mathbf{X}_i $\mathbf{X}'_{(M \times N)}$ encoder Item features (Nxd_i) Rating Matrix R Goal: Matrix reconstruction **TimeNN** • Rows, columns \longrightarrow Users, items 4.5 2.0 • Create 3 feature maps by normalizing the timestamps wrt user/item/platform first rating X 3.5 4.0 x • Very few known values (less than 1% of entries)

- Many items with few users, few items with many users

Two main solving strategies

Content filtering

- Recommend similar items to the ones the user liked
- Requires prior info on items (e.g. movie genre, lead actor...)
- This info provides limited information
- Performance does not scale with data

Collaborative filtering

- Recommendation based on user with similar rating history
- Performance scales with data
- Rich information based on user behavior

Read by both users

• Use fully-connected layers (32 and 1 hidden units) that are applied rating-wise

Feature-wise Linear Modulation (FiLM) [3]

- Used to combine time and rating information
- Only 3 free parameters
- Much more expressive than concatenation

$$\boldsymbol{R}_t = \alpha \boldsymbol{R} + \beta \boldsymbol{T}' + \gamma \boldsymbol{R} \cdot \boldsymbol{T}'$$

Bilinear encoder

• Combines the user and item features into a feature matrix of the same shape as R_t

$$oldsymbol{X}' = oldsymbol{X}_i oldsymbol{\Theta} oldsymbol{X}_u^T$$

Adaptive feature modulation

- Adds the user/item feature information
- Uses a importance matrix to leverage when the feature information is most valuable (i.e. cold start)

$$\mathbf{A}_{ij} = \begin{cases} \sigma(w_1 | \mathcal{O}_{i,i} | + w_2 | \mathcal{O}_{u,j} | + b) & |\mathcal{O}_{i,i} |, |\mathcal{O}_{u,j} | > 0 \\ 0 & |\mathcal{O}_{i,i} |, |\mathcal{O}_{u,j} | = 0 \end{cases}$$

$$\boldsymbol{R}' = \boldsymbol{A} \cdot \boldsymbol{R}_t + (1 - \boldsymbol{A}) \cdot \boldsymbol{X}'$$

Autoencoder input dropout

• Denoise the sparse signal received by the user/item.

• Susceptible to cold start and concept drift

recommended to him

Autorec

- First approach based on autoencoders (latent factor model) [1]
- Input: the rating matrix, with zeros for the unknown entries
- Output: reconstructed rating matrix, with all entries filled with the model predictions

 $\boldsymbol{H} = \sigma(\boldsymbol{R} \mathbf{W}_{enc} + \boldsymbol{b}_{enc})$ $\hat{R} = HW_{dec} + b_{dec}$

• The loss is calculated only for known entries

• It allows both explicit minimization of the prediction error on unobserved ratings, and the reconstruction error on observed ratings

Results

Ablation and comparison with state of the art

- Average RMSE recommendation results on several MovieLens datasets
- We use Modurec_[DFT] as the nomenclature for our model
 - D = with autoencoder dropout; F = with user and item features module; T = with time module

Dataset	GRALS	sRGCNN	GC-MC	STAR	CF-NADE	Sparse	TimeSVD++	I-Autorec*	Modurec	Modurec	Modurec
				-GCN		FC	flipped*		_D	_DT	_DFT
ML-100K	0.945	0.929	0.905	0.895			0.890	0.908	0.905	0.887	0.887
ML-1M			0.832	0.832	0.829	0.824	0.842	0.831	0.826	0.821	0.821
ML-10M			0.777	0.770	0.771	0.769	0.749	0.782	0.789	0.777	0.779

Cold start evaluation

- Evaluate on specific scenarios:
 - *Few ratings*: both $|\mathcal{O}_{i,i}|$ and $|\mathcal{O}_{u,j}|$ are in the bottom quantile
 - Many ratings: both $|\mathcal{O}_{i,i}|$ and $|\mathcal{O}_{u,j}|$ are in the top quantile
- Different architectures:

- Nothing: Remove the bilinear encoder and the adaptive combiner (no user or item features

Cold start and concept drift

Cold start

- Bad performance on new users or items due to lack of ratings
- Could stop new users from joining the platform

Concept drift

• Bad performance on older users or items due to distribution shifts over time [2]

- are used).
- Static: Use a much simpler combiner instead of our adaptive combiner. It is characterized by the following relation: $\mathbf{R}' = \alpha \mathbf{R}_t + (1 - \alpha) \mathbf{X}'$, where α is a scalar trainable parameter.
- Adaptive: Use the adaptive feature modulation.

Dataset	Algorithm	Few ratings	Many ratings
	Nothing	1.6093	0.8371
ML-100K	Static	1.6000	0.8417
	Adaptive	1.3412	0.8380
	Nothing	1.1481	0.7895
ML-1M	Static	1.1457	0.7900
	Adaptive	1.1360	0.7897

References

Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. AutoRec: Autoencoders Meet Collaborative Filtering. In WWW, pages [1] 111-112. ACM Press, 2015.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender systems. *Computer*, 42(8):30–37, 2009.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. FiLM: Visual Reasoning with a General Conditioning Layer. In AAAI Conference on Artificial Intelligence, April 2018.