Unsupervised Musical Timbre Transfer for Notification Sounds

Jing Yang¹, Tristan Cinquin¹, Gábor Sörös²

¹Department of Computer Science, ETH Zurich, Switzerland ²Nokia Bell Labs, Budapest, Hungary

IEEE ICASSP 2021

Useful but distracting notifications

Deliver auditory notifications in a less intrusive way

[2008] Jung – Ambience for Auditory Displays Embedded Musical Instruments as Peripheral Audio Cues 2019] Ananthabhotla and Paradiso – SoundSignaling: Realtime, Stylistic Modification of a Personal Music Corpus for Information Delivery

Deliver commonly used notification sounds less intrusively by developing audio style transfer techniques. Messenger

Our concept

Our contributions

Musical timbre transfer for artificial notification sounds

Objective and subjective evaluations of our notification timbre transfer method

Application of less intrusive notification delivery

Major challenges of notification timbre transfer

Ambiguous timbre of notification sounds

Our method for notification timbre transfer

Generator: fully convolutional U-Net architecture

Discriminator: convolutional PatchGAN discriminator

Splitting-and-concatenation mechanism for arbitrary notification length

[2019] Pasini – MelGAN-VC: Voice Conversion and Audio Style Transfer on Arbitrarily Long Samples using Spectrograms

Training data

Input domain (?):

- Sufficient training data
- Similar timbre features as the notification sounds

Output domain:

- MusicNet dataset
- YouTube

Video game music as the training data for input domain

VGGish feature vectors [2017] Hershey et al. – CNN Architectures for Large-Scale Audio Classification

Recognizing different musical instruments and soundtracks

Evaluation – timbre (using VGGish feature vectors)

Evaluation – melody (pitch and rhythm)

- Pitch similarity score [2010] Urbano et al. Melodic Similarity through Shape Similarity
- Rhythm similarity score [2018] Tomczak et al. Audio Style Transfer with Rhythmic Constraints

0 (different) - 1 (identical)

Baselines: Notifications reconstructed using Griffin-Lim algorithm GL-5 GL-200

	Piano	Cello	Guitar	Acc. violin	Classical	GL-5	GL-200
Pitch similarity score	0.458 ± 0.014	0.453 ± 0.016	0.449 ± 0.015	0.451 ± 0.013	0.445 ± 0.015	0.523 ± 0.023	0.831 ± 0.028
Rhythm similarity score	0.357 ± 0.038	0.330 ± 0.040	0.354 ± 0.047	0.345 ± 0.043	0.353 ± 0.046	0.479 ± 0.037	0.837 ± 0.042

Evaluation – user perception study on both timbre and melody

- > 10 arbitrary notification sounds transferred into piano
- > 53 participants (20 female, 33 male, age ϵ [20,52], average age = 28.132)
- 5-point Mean Opinion Score

1	Bad (very different from piano timbre / original melody)			
2	Poor (different from piano timbre / original melody)			
3	Fair (perceptible difference, but acceptable)			
4	Good (slightly perceptible difference, can be recognized as piano / the original melody)			
5	Excellent (imperceptible difference, it is piano / original melody)			

Timbre transfer: 3.345 ± 0.861 Melody preservation: 3.720 ± 0.261

Original notification

Transferred notification

More examples: https://gladys0313.github.io/notification-timbre-transfer/

Potential application – less distracting notification delivery

- 1. Amplitude adjustment
- 2. Tempo adjustment
- 3. Fade-in and fade-out effects

Music with notification (at 5s)

More examples: https://gladys0313.github.io/notification-timbre-transfer/

Conclusions and future work

- ✓ Notification timbre transfer
- CycleGAN-based model trained in an unsupervised manner
- \checkmark Video game music as the source domain
- \checkmark Efficacy and limitation
- ✓ Less intrusive information delivery

- Transferring notifications into a style that contains multiple timbre tracks
- Study to explore the usability of our notification delivery method

Unsupervised Musical Timbre Transfer for Notification Sounds

Jing Yang¹

¹Department of Computer Science, ETH Zurich, Switzerland ²Nokia Bell Labs, Budapest, Hungary

IEEE ICASSP 2021

https://gladys0313.github.io/notification-timbre-transfer/

