

Motivation

- Pervasive use of speech emotion recognition in many human-centric systems, such as behavioral health monitoring and empathetic conversational systems.
- Why modeling speech with graph?
- Graph is a compact, efficient, and scalable way to represent data.
- The temporal and spatial information can be coded into a graph.
- Modeling all samples with the same graph structure leads to a lot fewer number of trainable parameters in comparison with the recurrent models.

Contribution

- First work that takes a graph classification approach to SER.
- Leveraging accurate graph convolution, we obtain the state-of-the-art results on **IEMOCAP** and **MSP-IMPROV** databases.
- Our model has significantly fewer trainable parameters (~30K only) with better performance.

Problem Formulation

- Given:

- Speech graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- Data graph specified by the adjacency matrix $\mathbf{W} \in {\{\mathbf{A}_c, \mathbf{A}_l\}}$

	$\begin{bmatrix} 0 \end{bmatrix}$	1	0	• • •	1	$\begin{bmatrix} 0 \end{bmatrix}$	1	0	• • •	0
	1	0	1	• • •	0	1	0	1	• • •	0
$\mathbf{A}_{c} =$	0	1	0	• • •	0	0	1	0	• • •	0
				•••		:	•	:	••.	:
	1	0	• • •	1	0	0	0	• • •	1	0

- Each graph is associated with label \mathbf{y}_i
- Goal:
- We want to predict the emotion related to the speech graph

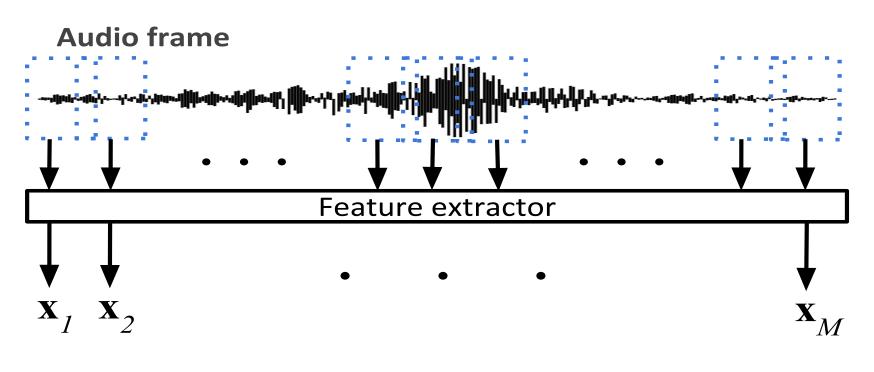
Compact Graph Architecture for Speech Emotion Recognition

Amir Shirian

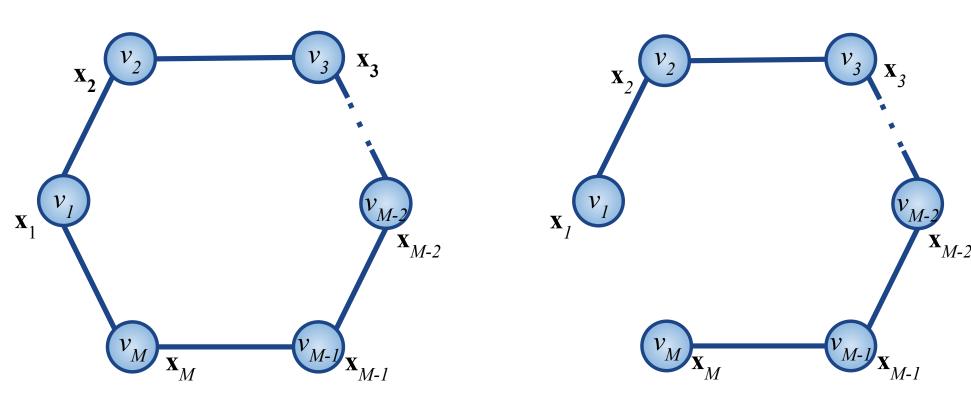
University of Warwick, UK

Graph Construction

It's a frame to node transformation.



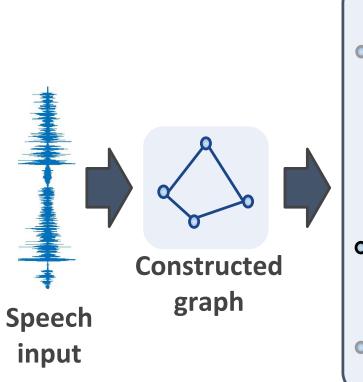
• LLD features were extracted from M frames (short, overlapping) segments).

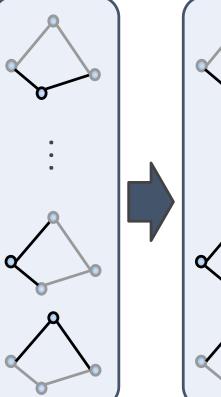


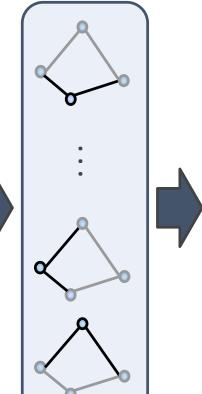
- Each of these M frames are associated with a node in a graph.
- Either a cycle (\mathbf{A}_c) or line (\mathbf{A}_l) structure is selected manually for the graph.

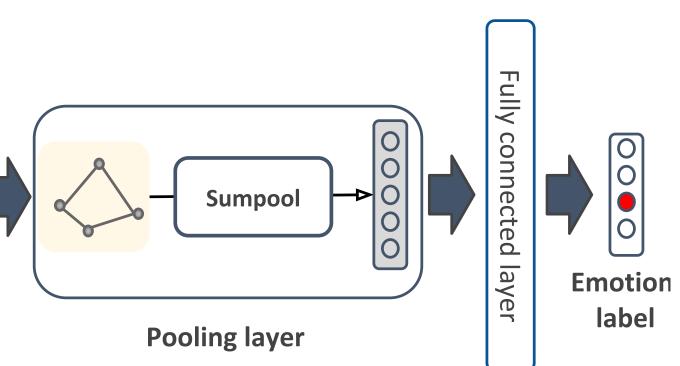
Model

The overview of our proposed graph-based architecture for SER



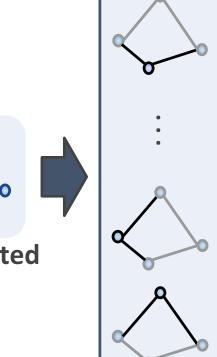






Graph convolution layers

- Gives constructed graph as input.
- Produces node embedding with two graph convolution layers
- Produces graph embedding with a pooling function.



Tanaya Guha

Compare with SOTA and graph baselines

Results on MSP-I	MPROV	1	Model	WA (%)	UA (%)		
Model	ΜΔ (%)		Graph baselines				
ModelWA (%) UA (%)Graph baselines			GCN	56.14	52.36		
· · ·			PATCHY-SAN	60.34	56.27		
GCN	54./1	51.42	PATCHY-Diff	63.23	58.71		
PATCHY-SAN	55.47	52.33	SER mo				
PATCHY-Diff	56.18	53.12			40.07		
SER mod	lels		Attn-BLSTM 2016	59.33	49.96		
ProgNet 2017	58.40		BLR 2017	62.54	57.85		
C			RNN 2017	63.50	58.80		
CNN 2019	50.84	-	CRNN 2018	63.98	60.35		
LSTM 2019	51.21	-	SegCNN 2019	64.53	62.34		
CNN-LSTM 2019	52.36	-	C				
Ours (cycle)	57.82	55.42	LSTM 2019	58.72	-		
Ours (line)	57.08	54.75	CNN-LSTM 2019	59.23	-		
			Ours (cycle)	65.29	62.27		
Ours (cycle w/o MLP)	56.82	53.22	Ours (line)	64.69	61.14		
			Ours (cycle w/o MLP)	64.19	60.31		

Model size comparison

GCN	PTCHY-SA
~76K	~60K

- First graph-based approach to SER.
- graphs.
- and several other recent graph models in SER.

GitHub link: github.com/AmirSh15/Compact_SER **Contact:** amir.shirian@warwick.ac.uk

ICASSP2021

Metro Toronto Convention Centre

Results

Results on **IEMOCAP**

AN PTCHY-Diff BLSTM Ours ~0.8M ~**30K** ~68K

Conclusions

• We transformed speech utterances to graphs with simple structures that largely simplify the convolution operation on

Defining the same structure for samples leads to a light-weight GCN architecture which outperforms LSTMs, standard GCNs